A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures

分位数 分位数回归 统计 计量经济学 推论 回归 混淆 因果推理 回归分析 线性回归 计算 数学 计算机科学 算法 人工智能
作者
Alexander P. Keil,Jessie P. Buckley,Katie M. O’Brien,Kelly K. Ferguson,Shanshan Zhao,Alexandra J. White
出处
期刊:Environmental Health Perspectives [Environmental Health Perspectives]
卷期号:128 (4) 被引量:389
标识
DOI:10.1289/ehp5838
摘要

Background: Exposure mixtures frequently occur in data across many domains, particularly in the fields of environmental and nutritional epidemiology. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum (WQS) regression that estimate a joint effect of the mixture components. Objectives: We demonstrate a new approach to estimating the joint effects of a mixture: quantile g-computation. This approach combines the inferential simplicity of WQS regression with the flexibility of g-computation, a method of causal effect estimation. We use simulations to examine whether quantile g-computation and WQS regression can accurately and precisely estimate the effects of mixtures in a variety of common scenarios. Methods: We examine the bias, confidence interval (CI) coverage, and bias–variance tradeoff of quantile g-computation and WQS regression and how these quantities are impacted by the presence of noncausal exposures, exposure correlation, unmeasured confounding, and nonlinearity of exposure effects. Results: Quantile g-computation, unlike WQS regression, allows inference on mixture effects that is unbiased with appropriate CI coverage at sample sizes typically encountered in epidemiologic studies and when the assumptions of WQS regression are not met. Further, WQS regression can magnify bias from unmeasured confounding that might occur if important components of the mixture are omitted from the analysis. Discussion: Unlike inferential approaches that examine the effects of individual exposures while holding other exposures constant, methods like quantile g-computation that can estimate the effect of a mixture are essential for understanding the effects of potential public health actions that act on exposure sources. Our approach may serve to help bridge gaps between epidemiologic analysis and interventions such as regulations on industrial emissions or mining processes, dietary changes, or consumer behavioral changes that act on multiple exposures simultaneously. https://doi.org/10.1289/EHP5838
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三千世界完成签到,获得积分10
2秒前
3秒前
龙虾发票完成签到,获得积分10
4秒前
QI完成签到 ,获得积分10
4秒前
orixero应助yjmmm采纳,获得10
4秒前
执着的日记本完成签到 ,获得积分10
5秒前
容荣完成签到,获得积分10
5秒前
渊崖曙春应助无语的代真采纳,获得10
7秒前
longer完成签到 ,获得积分10
7秒前
8秒前
maque4004完成签到,获得积分10
9秒前
赘婿应助张wx_100采纳,获得10
10秒前
酷酷李可爱婕完成签到 ,获得积分10
12秒前
13秒前
眠茶醒药完成签到,获得积分10
15秒前
vv完成签到 ,获得积分10
16秒前
16秒前
Andrew完成签到,获得积分10
16秒前
ajing完成签到,获得积分10
16秒前
白潇潇完成签到 ,获得积分10
17秒前
木习习完成签到 ,获得积分10
19秒前
舒适的平蓝完成签到 ,获得积分10
20秒前
我不理解完成签到,获得积分20
20秒前
笨笨娇完成签到 ,获得积分10
21秒前
21秒前
21秒前
22秒前
踏实aa完成签到,获得积分10
23秒前
23秒前
01AE86完成签到,获得积分20
24秒前
daheeeee完成签到,获得积分10
25秒前
LX完成签到,获得积分10
25秒前
yjmmm发布了新的文献求助10
26秒前
wan发布了新的文献求助10
27秒前
hxl123发布了新的文献求助10
27秒前
然然然后发布了新的文献求助50
30秒前
32秒前
酷波er应助清秀面包采纳,获得10
33秒前
周芷卉完成签到 ,获得积分10
35秒前
科目三应助hhh2018687采纳,获得10
36秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083