Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:192
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子夜发布了新的文献求助10
1秒前
1秒前
BMX5发布了新的文献求助30
2秒前
哦萨尔发布了新的文献求助10
2秒前
贾舒涵发布了新的文献求助10
2秒前
绝活中投完成签到 ,获得积分10
3秒前
黄天发布了新的文献求助10
3秒前
4秒前
8秒前
pink完成签到,获得积分10
8秒前
alwry发布了新的文献求助10
8秒前
佩琦琦完成签到,获得积分10
8秒前
思空无我发布了新的文献求助10
9秒前
失眠的念桃完成签到,获得积分10
10秒前
pink发布了新的文献求助30
11秒前
12秒前
Dailei完成签到,获得积分10
14秒前
爱听歌电灯胆完成签到 ,获得积分10
14秒前
科研通AI6应助学术版7e采纳,获得10
15秒前
善学以致用应助darling采纳,获得10
15秒前
GPTea应助科研通管家采纳,获得150
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
GPTea应助科研通管家采纳,获得150
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
minger987完成签到,获得积分20
16秒前
Ava应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
盏盏应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
QAQ完成签到 ,获得积分10
18秒前
NexusExplorer应助02022采纳,获得10
20秒前
SciGPT应助zhengzhao采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592