Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:192
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爽歪歪完成签到,获得积分10
刚刚
长柏完成签到 ,获得积分10
1秒前
任性完成签到,获得积分10
1秒前
Weilu完成签到 ,获得积分10
1秒前
2秒前
zouzhao完成签到,获得积分10
2秒前
2秒前
默默的皮牙子完成签到,获得积分0
3秒前
紫沫完成签到,获得积分10
3秒前
马上动起来完成签到,获得积分10
4秒前
善学以致用应助沉静傲霜采纳,获得10
4秒前
CiCi完成签到 ,获得积分10
4秒前
刘小小星完成签到 ,获得积分10
6秒前
顾矜应助Unicorn采纳,获得30
6秒前
zouzhao发布了新的文献求助10
6秒前
Auh完成签到,获得积分10
7秒前
逆风发布了新的文献求助10
7秒前
含光无形完成签到 ,获得积分10
7秒前
勤劳寡妇完成签到,获得积分10
7秒前
852应助冷静伯云采纳,获得10
7秒前
zzz完成签到,获得积分10
7秒前
Yuuki完成签到,获得积分10
7秒前
英姑应助苏大强采纳,获得10
7秒前
taytay完成签到,获得积分10
8秒前
南溪完成签到,获得积分10
8秒前
菜鸡L完成签到,获得积分10
9秒前
胡图图完成签到,获得积分0
9秒前
无事种芭蕉完成签到,获得积分10
10秒前
笔记本完成签到,获得积分0
10秒前
海慕云完成签到,获得积分10
10秒前
害怕的路灯完成签到,获得积分10
10秒前
笑傲完成签到,获得积分10
11秒前
Damon完成签到,获得积分10
11秒前
12秒前
彼岸完成签到,获得积分10
12秒前
ho应助ming采纳,获得10
12秒前
12秒前
13秒前
13秒前
Tal完成签到,获得积分0
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387611
求助须知:如何正确求助?哪些是违规求助? 4509621
关于积分的说明 14032074
捐赠科研通 4420457
什么是DOI,文献DOI怎么找? 2428263
邀请新用户注册赠送积分活动 1420857
关于科研通互助平台的介绍 1400038