Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:192
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙成发布了新的文献求助10
1秒前
裁缝戴发布了新的文献求助10
1秒前
超级的诗兰完成签到,获得积分10
2秒前
美味吐司发布了新的文献求助20
2秒前
4秒前
张宇龙关注了科研通微信公众号
5秒前
震动的听安完成签到,获得积分10
5秒前
5秒前
情怀应助北月南弦采纳,获得10
6秒前
今后应助膜拜里采纳,获得10
6秒前
打打应助孙成采纳,获得10
7秒前
Marcus完成签到,获得积分10
8秒前
白华苍松完成签到,获得积分10
8秒前
张张发布了新的文献求助10
8秒前
fancy完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
10秒前
小y完成签到 ,获得积分10
11秒前
luochunsheng完成签到,获得积分10
11秒前
声声慢完成签到,获得积分10
12秒前
风吹完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Kenny发布了新的文献求助10
13秒前
13秒前
哈哈的哈哈应助lsr采纳,获得20
14秒前
14秒前
白华苍松发布了新的文献求助20
14秒前
酷炫甜瓜完成签到,获得积分10
17秒前
allia完成签到 ,获得积分10
17秒前
张张完成签到,获得积分10
20秒前
幽默的雁开完成签到,获得积分10
21秒前
mobay完成签到,获得积分20
22秒前
22秒前
22秒前
超人发布了新的文献求助10
23秒前
顾矜应助琉璃采纳,获得10
23秒前
24秒前
24秒前
25秒前
自由的便当完成签到,获得积分10
25秒前
风中冰香应助细腻半仙采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428202
求助须知:如何正确求助?哪些是违规求助? 4542308
关于积分的说明 14179543
捐赠科研通 4459846
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878