Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:192
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默小翠发布了新的文献求助10
1秒前
斯文明杰发布了新的文献求助10
2秒前
隐形曼青应助扶余山本采纳,获得10
2秒前
4秒前
阳光的梦寒完成签到,获得积分10
4秒前
Freddy发布了新的文献求助100
5秒前
5秒前
左岸啊完成签到,获得积分10
6秒前
健忘的心锁完成签到,获得积分10
7秒前
核桃应助phero采纳,获得10
7秒前
8秒前
Jerry发布了新的文献求助10
8秒前
小蘑菇应助16采纳,获得20
9秒前
李健的小迷弟应助阳光珍采纳,获得10
10秒前
贾晓丽发布了新的文献求助10
10秒前
10秒前
刘大双发布了新的文献求助10
11秒前
zhu完成签到,获得积分10
11秒前
从容的海云完成签到,获得积分10
12秒前
hhh完成签到,获得积分20
13秒前
bkagyin应助守望者采纳,获得10
13秒前
13秒前
123完成签到,获得积分20
14秒前
我是老大应助酷酷如楠采纳,获得10
14秒前
温柔的盼雁完成签到,获得积分10
16秒前
华仔应助xjj采纳,获得10
17秒前
Meyako应助英勇的新瑶采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
123发布了新的文献求助10
21秒前
21秒前
21秒前
一一完成签到,获得积分10
22秒前
23秒前
Orange应助帅气东蒽采纳,获得10
23秒前
Mercury发布了新的文献求助200
24秒前
lyu完成签到,获得积分10
24秒前
吃元宵发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033