Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:177
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ou采纳,获得10
刚刚
善学以致用应助mengdewen采纳,获得10
1秒前
bkagyin应助Dominic采纳,获得10
1秒前
1秒前
kklkimo完成签到,获得积分10
2秒前
2秒前
怕黑的静蕾应助畅快访蕊采纳,获得10
2秒前
Lucas应助华老师采纳,获得10
4秒前
5秒前
追风发布了新的文献求助10
5秒前
6秒前
niu发布了新的文献求助10
6秒前
搞科研的静静完成签到,获得积分10
6秒前
7秒前
里里完成签到,获得积分10
8秒前
9秒前
姚芭蕉发布了新的文献求助10
10秒前
酸奶燕麦球完成签到 ,获得积分10
11秒前
发嗲的乐安完成签到 ,获得积分10
11秒前
爆米花应助魔幻的泽洋采纳,获得10
14秒前
14秒前
FH挖掘机关注了科研通微信公众号
17秒前
文献自由侠完成签到,获得积分20
17秒前
陳新儒发布了新的文献求助10
17秒前
18秒前
Gauss应助heavenhorse采纳,获得30
19秒前
蟹老板完成签到,获得积分10
19秒前
19秒前
闵运气完成签到,获得积分10
19秒前
陌路发布了新的文献求助10
19秒前
斯文败类应助嘟嘟包采纳,获得30
20秒前
汉堡格完成签到,获得积分10
20秒前
21秒前
小凯同学完成签到 ,获得积分10
21秒前
沫沫完成签到 ,获得积分10
21秒前
叙白发布了新的文献求助30
21秒前
22秒前
斩妖凉完成签到,获得积分10
24秒前
24秒前
dudu发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420