De Novo Molecule Design by Translating from Reduced Graphs to SMILES

化学信息学 化学空间 计算机科学 分子图 图形 理论计算机科学 代表(政治) 集合(抽象数据类型) 人工智能 机器学习 化学 药物发现 计算化学 政治 生物化学 程序设计语言 法学 政治学
作者
Péter Pogány,Navot Arad,Sam Genway,Stephen D. Pickett
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (3): 1136-1146 被引量:51
标识
DOI:10.1021/acs.jcim.8b00626
摘要

A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Howie完成签到,获得积分10
刚刚
Lontano发布了新的文献求助10
1秒前
凌兰发布了新的文献求助10
1秒前
1秒前
小超仁发布了新的文献求助10
1秒前
2秒前
章鱼发布了新的文献求助10
2秒前
2秒前
2秒前
砥砺前行发布了新的文献求助10
2秒前
2秒前
2秒前
wil完成签到,获得积分20
2秒前
眼睛大乐蓉完成签到,获得积分20
2秒前
vv完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
ding应助哈温采纳,获得10
3秒前
3秒前
4秒前
Lucas应助缝纫工采纳,获得10
4秒前
拼搏依玉发布了新的文献求助10
4秒前
小马甲应助luxury采纳,获得10
4秒前
5秒前
5秒前
fangyuan发布了新的文献求助50
5秒前
treasure发布了新的文献求助10
5秒前
搜集达人应助345678与采纳,获得10
5秒前
852应助XHX采纳,获得10
6秒前
李李李发布了新的文献求助10
6秒前
6秒前
Sunqqhope发布了新的文献求助10
6秒前
我是老大应助凉拌冰阔落采纳,获得10
7秒前
7秒前
Reciiiil发布了新的文献求助10
7秒前
7秒前
7秒前
请叫我韩独秀完成签到,获得积分10
8秒前
zzzyc发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274