De Novo Molecule Design by Translating from Reduced Graphs to SMILES

化学信息学 化学空间 计算机科学 分子图 图形 理论计算机科学 代表(政治) 集合(抽象数据类型) 人工智能 机器学习 化学 药物发现 计算化学 政治 生物化学 程序设计语言 法学 政治学
作者
Péter Pogány,Navot Arad,Sam Genway,Stephen D. Pickett
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (3): 1136-1146 被引量:51
标识
DOI:10.1021/acs.jcim.8b00626
摘要

A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyy完成签到,获得积分10
1秒前
1秒前
MateoX发布了新的文献求助10
2秒前
2秒前
郭凯丽发布了新的文献求助30
2秒前
三叔应助Singularity采纳,获得10
4秒前
清脆剑封发布了新的文献求助30
5秒前
6秒前
6秒前
称心文博发布了新的文献求助30
6秒前
7秒前
科研通AI2S应助朴实映天采纳,获得10
7秒前
小二郎应助蜜雪冰城采纳,获得10
8秒前
科研通AI2S应助霸气的千愁采纳,获得10
9秒前
科研通AI2S应助MateoX采纳,获得10
9秒前
清脆剑封完成签到,获得积分10
11秒前
13秒前
天妒嘤才完成签到,获得积分20
13秒前
烟花应助Li_KK采纳,获得10
14秒前
16秒前
17秒前
不配.应助称心文博采纳,获得10
18秒前
树下发布了新的文献求助10
18秒前
aka完成签到,获得积分10
18秒前
18秒前
nancyy发布了新的文献求助10
19秒前
Elary发布了新的文献求助10
19秒前
20秒前
aka发布了新的文献求助10
21秒前
liweiDr发布了新的文献求助10
22秒前
怕孤独的鹭洋完成签到,获得积分10
22秒前
23秒前
天天快乐应助DearWhite采纳,获得30
25秒前
25秒前
MateoX完成签到,获得积分10
26秒前
26秒前
乐乐应助aka采纳,获得10
29秒前
大个应助fcc16采纳,获得10
29秒前
聪慧勒发布了新的文献求助10
29秒前
T1unkillable发布了新的文献求助10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109