材料科学
阳极
法拉第效率
电解质
化学工程
锂(药物)
碳纤维
储能
氮气
电极
多孔性
复合材料
有机化学
医学
复合数
物理
工程类
量子力学
内分泌学
物理化学
功率(物理)
化学
作者
Xudong Hu,Xiaohong Sun,Seung Joon Yoo,Brian Evanko,Feng Ru Fan,Shu Cai,Chunming Zheng,Wenbin Hu,Galen D. Stucky
出处
期刊:Nano Energy
[Elsevier]
日期:2019-02-01
卷期号:56: 828-839
被引量:249
标识
DOI:10.1016/j.nanoen.2018.11.081
摘要
Carbon-based anode materials hold a promising future for sodium-ion batteries (SIBs) due to their natural abundance and low cost of development. In spite of carbon's important role in the commercialization of lithium-ion batteries (LIBs), further exploration is necessary in order to find high-performance, high-rate carbon anode materials for SIBs. A honeycomb-like, nitrogen-rich (17.72 at%), hierarchically porous, and highly disordered carbonaceous material (N-HC) with an expanded interlayer distance (0.44 nm in average) is synthesized by spray drying and subsequent pyrolysis under flowing NH3. The hierarchically porous structure and rich nitrogen doping result in a large specific surface area (722 m2 g−1), more defects and active sites, and greater functional interface accessibility for the active porous carbonaceous material and electrolyte. When N-HC is used as the anode material for SIBs, the batteries display favorable discharge capacities (255.9 mA h g−1 in the 3000th cycle at 500 mA g−1) and good capacitive-energy-storage behavior (67% at a scan rate of 0.5 mV s−1) with excellent high-rate performance and ultra-stable cyclability over 10,000 cycles at 5000 mA g−1. Our results show that the combination of the hierarchically porous structure and nitrogen doping leads to improved energy storage by increasing the capacitive energy storage, which enhances the high-rate performance of N-HC. To further enhance the performance of the material, an electrical pretreatment is employed to increase the initial Coulombic efficiency of N-HC to 79.5%, a record high for an SIB cell. A full cell with an N-HC anode and a Na3V2(PO4)3/C cathode shows a high capacity with a favorable cyclability (238.7 mA h g−1 after 100 cycles at 100 mA g−1 and a capacity retention of 95.3% compared to the second cycle).
科研通智能强力驱动
Strongly Powered by AbleSci AI