External validation of prediction models for mortality in an incident dialysis population

医学 统计的 血液透析 透析 人口 腹膜透析 预测建模 回顾性队列研究 急诊医学 队列 索引(排版) 统计 内科学 重症监护医学 数学 环境卫生 万维网 计算机科学
作者
Thomas A. Mavrakanas,Karl Asfour,Murray Vasilevsky,Paul E. Barré,Ahsan Alam
出处
期刊:Clinical Nephrology [Dustri-Verlag Dr. Karl Feistle]
卷期号:91 (2): 65-71
标识
DOI:10.5414/cn109310
摘要

Different prediction models have been established to estimate mortality in the dialysis population. This study aims to externally validate the different available mortality prediction models in an incident dialysis population.This was a retrospective cohort study of incident hemodialysis and peritoneal dialysis patients at two academic tertiary care centers.Three previously published prediction models were used: the Liu index, the Urea5 score, and a predictive model estimating the survival probability by Hemke et al. [6]. Models were compared using the C-statistic, net reclassification index, and integrated discrimination improvement. Only the subgroup of 193 patients with enough data to be included in all models was used.377 patients were started on dialysis in both institutions between 2006 and 2011. Median follow-up was 787 days. 104 patients (27.6%) died during follow-up and 181 were admitted to the hospital (48.0%). All three models were predictive of mortality and hospital admissions. The survival probability model by Hemke et al. [6] performed better than the other two models for mortality (C-statistic 0.72). The Liu index had the highest performance for hospital admissions (C-statistic 0.65). Using reclassification statistics (reference = Urea5), the only model to improve discriminatory ability was the Liu index for the outcome of hospital admission.The survival probability model by Hemke et al. [6] may be preferred for mortality prediction in incident dialysis patients. The Liu index could be used to predict hospital admissions in the same population. Available models demonstrated only modest performance in predicting either outcome. Therefore, alternative models need to be developed. .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsy发布了新的文献求助10
刚刚
科研通AI5应助趙途嘵生采纳,获得10
刚刚
Star完成签到,获得积分10
1秒前
天蓝色与柠檬黄完成签到,获得积分20
2秒前
3秒前
cherrychou完成签到,获得积分10
4秒前
coco完成签到 ,获得积分10
6秒前
小蘑菇应助研友_Lpa2On采纳,获得10
9秒前
ed发布了新的文献求助10
9秒前
10秒前
深情安青应助天玄一刀采纳,获得10
10秒前
空曲完成签到,获得积分10
12秒前
shirley要奋斗完成签到 ,获得积分10
13秒前
14秒前
吕嫣娆完成签到 ,获得积分10
15秒前
上杉绘梨衣完成签到,获得积分10
16秒前
空曲发布了新的文献求助10
16秒前
17秒前
沐颜完成签到 ,获得积分10
18秒前
遗憾交给时间完成签到,获得积分10
19秒前
iota完成签到,获得积分10
21秒前
范范完成签到,获得积分10
22秒前
lanbing802完成签到,获得积分10
22秒前
22秒前
趙途嘵生发布了新的文献求助10
23秒前
25秒前
复杂的方盒完成签到 ,获得积分10
27秒前
28秒前
幽默果汁发布了新的文献求助10
29秒前
烟花应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
香蕉觅云应助科研通管家采纳,获得20
30秒前
wqc2060完成签到,获得积分10
31秒前
余味完成签到,获得积分10
31秒前
linhuafeng完成签到 ,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571384
求助须知:如何正确求助?哪些是违规求助? 3141954
关于积分的说明 9445048
捐赠科研通 2843411
什么是DOI,文献DOI怎么找? 1562840
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524