Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants

漆酶 化学 催化作用 水溶液中的金属离子 组合化学 金属 纳米材料 纳米技术 有机化学 材料科学
作者
Jinghui Wang,Renliang Huang,Wei Qi,Rongxin Su,Bernard P. Binks,Zhimin He
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:254: 452-462 被引量:420
标识
DOI:10.1016/j.apcatb.2019.05.012
摘要

Nanozymes, defined as nanomaterials with enzyme-like activity, have attracted extensive interest in both fundamental and applied research. Laccases are members of the multi-copper oxidases, which are utilized as green catalysts in the environmental catalysis and biochemical industry. In this paper, we report a facile strategy for the preparation of a new class of nanozyme (denoted as CH-Cu) with laccase-like activity inspired by the structure of the active site and the electron transfer pathway of laccase via the coordination of Cu+/Cu2+ with a cysteine (Cys)-histidine (His) dipeptide. The CH-Cu nanozymes exhibit excellent catalytic activity, recyclability and substrate universality and have a similar Km (Michaelis constant) and a higher vmax (maximum rate) than laccase at the same mass concentration. They are robust under a variety of conditions, such as extreme pH, high temperature, long-term storage and high salinity, which can cause severe loss in the catalytic activity of laccase. Higher efficacy of the CH-Cu nanozymes compared with laccase in the degradation of chlorophenols and bisphenols is also demonstrated in a batch reaction. Furthermore, a method for the quantitative detection of epinephrine by a smart phone is established based on the CH-Cu nanozymes. We believe that this nanozyme has promising applications in environmental catalysis and rapid detection and expect that combining key peptides as metal ligands with metal ions to mimic the structure of the catalytic center of a natural enzyme will be a general and important strategy for the design and synthesis of a new type of nanozyme that can be used in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助不知人采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
英俊的铭应助hnhanzi采纳,获得10
1秒前
1秒前
1秒前
1秒前
青柠味薯片完成签到,获得积分10
1秒前
阿黑发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
ccyy完成签到 ,获得积分10
5秒前
呼君伟完成签到,获得积分10
5秒前
苻思远完成签到 ,获得积分10
5秒前
秋秋儿发布了新的文献求助10
6秒前
6秒前
6秒前
Owen应助久等雨归采纳,获得10
6秒前
7秒前
药药55发布了新的文献求助10
7秒前
CodeCraft应助natus采纳,获得10
7秒前
1111发布了新的文献求助10
7秒前
壹贰叁完成签到,获得积分10
7秒前
RaynorHank发布了新的文献求助10
8秒前
哆啦A淼完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
英勇滑板发布了新的文献求助10
8秒前
9秒前
9秒前
alabala完成签到,获得积分20
9秒前
花花完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
Jack发布了新的文献求助10
12秒前
落羽完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735678
求助须知:如何正确求助?哪些是违规求助? 5361982
关于积分的说明 15330919
捐赠科研通 4879862
什么是DOI,文献DOI怎么找? 2622363
邀请新用户注册赠送积分活动 1571343
关于科研通互助平台的介绍 1528175