Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks

计算机科学 遥感 规范化(社会学) 人工智能 模式识别(心理学) 空间分析 钥匙(锁) 水萃取 图像分辨率 数据挖掘 萃取(化学) 化学 计算机安全 色谱法 社会学 人类学 地质学
作者
Liwei Li,Zhi Yan,Qian Shen,Gang Cheng,Lianru Gao,Bing Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (10): 1162-1162 被引量:78
标识
DOI:10.3390/rs11101162
摘要

This paper studies the use of the Fully Convolutional Networks (FCN) model in the extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8 m in the south of the Beijing metropolitan area were used to extensively validate the FCN model. Four key factors including input features, training data, transfer learning, and data augmentation related to the performance of the FCN model were empirically analyzed by using 36 combinations of various parameter settings. Our findings indicate that the FCN-based method can work as a robust and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method trained on a small amount of labeled L1A data can also significantly outperform the Normalized Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts are introduced to preprocess the input data for the latter three methods. The advantages of the FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially in urban areas with mixed water and shadows. Though the settings of four key factors significantly affect the performance of the FCN based method, choosing a qualified setting for the FCN model is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of water from VHR images can be extended to extract other land covers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
pyQaQ完成签到,获得积分20
1秒前
清脆香露发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
hujlina发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
7秒前
燊yy发布了新的文献求助10
8秒前
小糊涂仙儿完成签到 ,获得积分10
8秒前
FashionBoy应助任浩采纳,获得30
8秒前
orixero应助玩命的紫南采纳,获得10
8秒前
lx840518发布了新的文献求助10
8秒前
英俊的铭应助森森采纳,获得10
9秒前
111发布了新的文献求助20
9秒前
菠菜贸易中心关注了科研通微信公众号
9秒前
9秒前
9秒前
无奈初雪发布了新的文献求助10
10秒前
脑洞疼应助zhang采纳,获得30
10秒前
FashionBoy应助huangy采纳,获得10
11秒前
12秒前
冷傲忆枫完成签到,获得积分10
12秒前
12秒前
Akim应助清爽的迎天采纳,获得10
13秒前
希望天下0贩的0应助燊yy采纳,获得10
14秒前
早早完成签到,获得积分10
14秒前
微笑的外绣完成签到,获得积分10
15秒前
一点灵光完成签到,获得积分10
15秒前
kesler完成签到,获得积分20
16秒前
朴素懿轩完成签到,获得积分10
18秒前
18秒前
小郑顺利毕业完成签到,获得积分10
18秒前
wang发布了新的文献求助10
19秒前
饲料批发发布了新的文献求助10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218493
求助须知:如何正确求助?哪些是违规求助? 4392450
关于积分的说明 13676083
捐赠科研通 4255081
什么是DOI,文献DOI怎么找? 2334721
邀请新用户注册赠送积分活动 1332386
关于科研通互助平台的介绍 1286491