Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks

计算机科学 遥感 规范化(社会学) 人工智能 模式识别(心理学) 空间分析 钥匙(锁) 水萃取 图像分辨率 数据挖掘 萃取(化学) 地质学 化学 社会学 色谱法 计算机安全 人类学
作者
Liwei Li,Zhi Yan,Qian Shen,Gang Cheng,Lianru Gao,Bing Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (10): 1162-1162 被引量:78
标识
DOI:10.3390/rs11101162
摘要

This paper studies the use of the Fully Convolutional Networks (FCN) model in the extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8 m in the south of the Beijing metropolitan area were used to extensively validate the FCN model. Four key factors including input features, training data, transfer learning, and data augmentation related to the performance of the FCN model were empirically analyzed by using 36 combinations of various parameter settings. Our findings indicate that the FCN-based method can work as a robust and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method trained on a small amount of labeled L1A data can also significantly outperform the Normalized Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts are introduced to preprocess the input data for the latter three methods. The advantages of the FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially in urban areas with mixed water and shadows. Though the settings of four key factors significantly affect the performance of the FCN based method, choosing a qualified setting for the FCN model is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of water from VHR images can be extended to extract other land covers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
badada完成签到,获得积分10
1秒前
1秒前
七月流火给xuan的求助进行了留言
1秒前
茉莉园完成签到,获得积分10
1秒前
大江大河完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
YJJ发布了新的文献求助10
4秒前
Freddie完成签到,获得积分10
5秒前
安静一曲完成签到 ,获得积分10
5秒前
活着完成签到,获得积分10
5秒前
Ohoooo完成签到,获得积分10
6秒前
wyc发布了新的文献求助10
6秒前
笨笨晓蓝发布了新的文献求助10
6秒前
6秒前
ding应助橘子的角动量采纳,获得10
6秒前
6秒前
Xu发布了新的文献求助10
6秒前
6秒前
HHH完成签到 ,获得积分10
7秒前
小伍同学完成签到,获得积分10
7秒前
囧囧有妖完成签到,获得积分20
7秒前
7秒前
7秒前
linhuafeng完成签到 ,获得积分10
8秒前
muyassar完成签到,获得积分10
8秒前
11111完成签到,获得积分10
9秒前
9秒前
如履平川完成签到 ,获得积分10
9秒前
万能图书馆应助波比大王采纳,获得10
9秒前
Ava应助文静元风采纳,获得10
10秒前
10秒前
Min发布了新的文献求助10
11秒前
11秒前
粗心的胜发布了新的文献求助10
11秒前
12秒前
小徐801完成签到,获得积分10
12秒前
wyc完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498