Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks

计算机科学 遥感 规范化(社会学) 人工智能 模式识别(心理学) 空间分析 钥匙(锁) 水萃取 图像分辨率 数据挖掘 萃取(化学) 化学 计算机安全 色谱法 社会学 人类学 地质学
作者
Liwei Li,Zhi Yan,Qian Shen,Gang Cheng,Lianru Gao,Bing Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (10): 1162-1162 被引量:78
标识
DOI:10.3390/rs11101162
摘要

This paper studies the use of the Fully Convolutional Networks (FCN) model in the extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8 m in the south of the Beijing metropolitan area were used to extensively validate the FCN model. Four key factors including input features, training data, transfer learning, and data augmentation related to the performance of the FCN model were empirically analyzed by using 36 combinations of various parameter settings. Our findings indicate that the FCN-based method can work as a robust and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method trained on a small amount of labeled L1A data can also significantly outperform the Normalized Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts are introduced to preprocess the input data for the latter three methods. The advantages of the FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially in urban areas with mixed water and shadows. Though the settings of four key factors significantly affect the performance of the FCN based method, choosing a qualified setting for the FCN model is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of water from VHR images can be extended to extract other land covers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomato发布了新的文献求助30
1秒前
陈莹发布了新的文献求助10
2秒前
3秒前
3秒前
小狗同志006完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
皓月繁星完成签到,获得积分10
4秒前
ZeJ发布了新的文献求助10
5秒前
5秒前
6秒前
usrcu完成签到 ,获得积分10
6秒前
122x应助赖道之采纳,获得10
7秒前
厉不厉害你坤哥完成签到,获得积分10
7秒前
wuzhizhiya发布了新的文献求助10
8秒前
8秒前
8秒前
皓月繁星发布了新的文献求助10
9秒前
9秒前
迷路白桃发布了新的文献求助20
9秒前
ZeJ完成签到,获得积分10
10秒前
景别发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助陈莹采纳,获得10
11秒前
GXY发布了新的文献求助10
11秒前
嘟嘟发布了新的文献求助10
12秒前
14秒前
Akim应助单纯的雅香采纳,获得10
14秒前
15秒前
16秒前
成就的书包完成签到,获得积分10
17秒前
小疙瘩发布了新的文献求助10
17秒前
18秒前
metalmd发布了新的文献求助10
18秒前
18秒前
学术蠕虫发布了新的文献求助10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
sutharsons应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808