Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks

计算机科学 遥感 规范化(社会学) 人工智能 模式识别(心理学) 空间分析 钥匙(锁) 水萃取 图像分辨率 数据挖掘 萃取(化学) 地质学 化学 社会学 色谱法 计算机安全 人类学
作者
Liwei Li,Zhi Yan,Qian Shen,Gang Cheng,Lianru Gao,Bing Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (10): 1162-1162 被引量:78
标识
DOI:10.3390/rs11101162
摘要

This paper studies the use of the Fully Convolutional Networks (FCN) model in the extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8 m in the south of the Beijing metropolitan area were used to extensively validate the FCN model. Four key factors including input features, training data, transfer learning, and data augmentation related to the performance of the FCN model were empirically analyzed by using 36 combinations of various parameter settings. Our findings indicate that the FCN-based method can work as a robust and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method trained on a small amount of labeled L1A data can also significantly outperform the Normalized Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts are introduced to preprocess the input data for the latter three methods. The advantages of the FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially in urban areas with mixed water and shadows. Though the settings of four key factors significantly affect the performance of the FCN based method, choosing a qualified setting for the FCN model is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of water from VHR images can be extended to extract other land covers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
1秒前
1秒前
lorenz发布了新的文献求助30
6秒前
eee完成签到 ,获得积分10
6秒前
稳重元蝶发布了新的文献求助30
8秒前
9秒前
图图完成签到 ,获得积分10
9秒前
袁yuan完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
12秒前
12秒前
葛岸发布了新的文献求助10
13秒前
Hello应助他们叫我张国荣采纳,获得10
14秒前
jianghe597发布了新的文献求助10
16秒前
17秒前
Teen发布了新的文献求助10
17秒前
畅快的道之完成签到,获得积分10
17秒前
19秒前
袁yuan发布了新的文献求助20
20秒前
20秒前
24秒前
稳重元蝶完成签到,获得积分10
24秒前
调皮茗茗完成签到 ,获得积分10
25秒前
科研通AI2S应助yingw采纳,获得10
25秒前
27秒前
28秒前
29秒前
keep发布了新的文献求助10
29秒前
无花果应助ILBY采纳,获得10
29秒前
jqy发布了新的文献求助10
31秒前
赵勇发布了新的文献求助10
34秒前
56jhjl完成签到,获得积分10
35秒前
36秒前
9℃完成签到 ,获得积分10
38秒前
yuanzhilong发布了新的文献求助10
39秒前
Channingh完成签到,获得积分10
40秒前
lorenz完成签到,获得积分10
41秒前
小小牛完成签到,获得积分10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313559
求助须知:如何正确求助?哪些是违规求助? 2945879
关于积分的说明 8527489
捐赠科研通 2621538
什么是DOI,文献DOI怎么找? 1433778
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637