亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks

计算机科学 遥感 规范化(社会学) 人工智能 模式识别(心理学) 空间分析 钥匙(锁) 水萃取 图像分辨率 数据挖掘 萃取(化学) 化学 计算机安全 色谱法 社会学 人类学 地质学
作者
Liwei Li,Zhi Yan,Qian Shen,Gang Cheng,Lianru Gao,Bing Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (10): 1162-1162 被引量:78
标识
DOI:10.3390/rs11101162
摘要

This paper studies the use of the Fully Convolutional Networks (FCN) model in the extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8 m in the south of the Beijing metropolitan area were used to extensively validate the FCN model. Four key factors including input features, training data, transfer learning, and data augmentation related to the performance of the FCN model were empirically analyzed by using 36 combinations of various parameter settings. Our findings indicate that the FCN-based method can work as a robust and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method trained on a small amount of labeled L1A data can also significantly outperform the Normalized Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts are introduced to preprocess the input data for the latter three methods. The advantages of the FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially in urban areas with mixed water and shadows. Though the settings of four key factors significantly affect the performance of the FCN based method, choosing a qualified setting for the FCN model is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of water from VHR images can be extended to extract other land covers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助铭铭采纳,获得10
10秒前
19秒前
Fluoxtine发布了新的文献求助10
23秒前
lyw发布了新的文献求助10
24秒前
29秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
41秒前
铭铭发布了新的文献求助10
44秒前
herococa完成签到,获得积分0
45秒前
是谁还没睡完成签到 ,获得积分10
1分钟前
Fluoxtine发布了新的文献求助10
1分钟前
学术交流高完成签到 ,获得积分10
1分钟前
凡舍完成签到 ,获得积分10
1分钟前
搜集达人应助dawn采纳,获得10
1分钟前
1分钟前
dawn完成签到,获得积分20
1分钟前
dawn发布了新的文献求助10
2分钟前
2分钟前
汉堡包应助Fluoxtine采纳,获得10
2分钟前
xixi发布了新的文献求助10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
机灵自中完成签到,获得积分10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
科研通AI6.1应助xixi采纳,获得10
2分钟前
lyw发布了新的文献求助10
2分钟前
田様应助Stellarshi517采纳,获得20
3分钟前
3分钟前
kuiuLinvk发布了新的文献求助10
3分钟前
3分钟前
kuiuLinvk完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
采薇发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577