Resonant domain-wall-enhanced tunable microwave ferroelectrics

铁电性 压电 材料科学 功勋 电介质 微波食品加热 介电损耗 电场 磁滞 光电子学 电容 共振(粒子物理) 凝聚态物理 电极 物理 量子力学 粒子物理学 复合材料
作者
Zongquan Gu,Shishir Pandya,Atanu Samanta,Shi Liu,Geoffrey Xiao,Cedric J. G. Meyers,Anoop R. Damodaran,Haim Barak,Arvind Dasgupta,Sahar Saremi,A. Polemi,Liyan Wu,Adrian Podpirka,Alexandria Will‐Cole,Christopher J. Hawley,Peter K. Davies,R.A. York,Ilya Grinberg,Lane W. Martin,Jonathan E. Spanier
出处
期刊:Nature [Nature Portfolio]
卷期号:560 (7720): 622-627 被引量:102
标识
DOI:10.1038/s41586-018-0434-2
摘要

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1–8 gigahertz) is achieved in an individual device—a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices. The domain-wall structure and dynamics are found to enhance, rather than inhibit, the high-frequency performance of an intrinsically tunable material, obtaining ultralow loss and exceptional frequency selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西子阳发布了新的文献求助10
刚刚
西子阳发布了新的文献求助10
刚刚
西子阳发布了新的文献求助10
刚刚
影子发布了新的文献求助10
刚刚
科目三应助111111采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
任浩发布了新的文献求助10
4秒前
FashionBoy应助陈词滥调采纳,获得10
4秒前
5秒前
dandan发布了新的文献求助10
7秒前
LuckyM完成签到 ,获得积分10
7秒前
扶摇完成签到 ,获得积分10
7秒前
疯子魔煞发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助150
8秒前
harri发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
孟琳朋完成签到,获得积分20
13秒前
慕容真完成签到,获得积分10
13秒前
明鹄完成签到 ,获得积分10
14秒前
Kilig发布了新的文献求助10
16秒前
香芋发布了新的文献求助10
17秒前
科研通AI6应助qianqian采纳,获得10
17秒前
17秒前
18秒前
bkagyin应助别绪叁仟采纳,获得10
19秒前
WCM完成签到,获得积分10
20秒前
大方的蹇发布了新的文献求助10
21秒前
雪雪发布了新的文献求助10
22秒前
22秒前
汀沐发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
日青发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896470
求助须知:如何正确求助?哪些是违规求助? 4178142
关于积分的说明 12969952
捐赠科研通 3941381
什么是DOI,文献DOI怎么找? 2162251
邀请新用户注册赠送积分活动 1180748
关于科研通互助平台的介绍 1086255