Resonant domain-wall-enhanced tunable microwave ferroelectrics

铁电性 压电 材料科学 功勋 电介质 微波食品加热 介电损耗 电场 磁滞 光电子学 电容 共振(粒子物理) 凝聚态物理 电极 物理 量子力学 粒子物理学 复合材料
作者
Zongquan Gu,Shishir Pandya,Atanu Samanta,Shi Liu,Geoffrey Xiao,Cedric J. G. Meyers,Anoop R. Damodaran,Haim Barak,Arvind Dasgupta,Sahar Saremi,A. Polemi,Liyan Wu,Adrian Podpirka,Alexandria Will‐Cole,Christopher J. Hawley,Peter K. Davies,R.A. York,Ilya Grinberg,Lane W. Martin,Jonathan E. Spanier
出处
期刊:Nature [Springer Nature]
卷期号:560 (7720): 622-627 被引量:116
标识
DOI:10.1038/s41586-018-0434-2
摘要

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1–8 gigahertz) is achieved in an individual device—a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices. The domain-wall structure and dynamics are found to enhance, rather than inhibit, the high-frequency performance of an intrinsically tunable material, obtaining ultralow loss and exceptional frequency selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiyiding发布了新的文献求助10
刚刚
高大的老头完成签到,获得积分10
1秒前
xgx984完成签到,获得积分10
1秒前
健壮听筠发布了新的文献求助10
1秒前
2秒前
善学以致用应助欢喜寄风采纳,获得10
2秒前
3秒前
3秒前
沉静青寒完成签到,获得积分10
3秒前
4秒前
米菲有嘴巴完成签到,获得积分10
4秒前
Silole完成签到,获得积分10
4秒前
坦率耳机应助Lvy采纳,获得20
4秒前
5秒前
5秒前
隐形曼青应助Huang采纳,获得10
5秒前
5秒前
烟花应助自然的清炎采纳,获得10
6秒前
科研狂人完成签到,获得积分10
7秒前
Phoebe发布了新的文献求助10
7秒前
魔魔胡胡胡萝卜完成签到,获得积分10
7秒前
8秒前
小陈总完成签到 ,获得积分10
9秒前
mmyhn发布了新的文献求助10
9秒前
timo发布了新的文献求助10
9秒前
健壮听筠完成签到,获得积分20
10秒前
星辰大海应助科研狂人采纳,获得10
10秒前
自由的丹南完成签到,获得积分10
10秒前
10秒前
11秒前
Huang完成签到,获得积分10
12秒前
zbm完成签到 ,获得积分10
12秒前
12秒前
CodeCraft应助微笑的皮卡丘采纳,获得10
12秒前
光亮觅云发布了新的文献求助30
13秒前
大模型应助骆钧采纳,获得10
13秒前
14秒前
追寻南珍完成签到,获得积分20
14秒前
海拾月完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932