Resonant domain-wall-enhanced tunable microwave ferroelectrics

铁电性 压电 材料科学 功勋 电介质 微波食品加热 介电损耗 电场 磁滞 光电子学 电容 共振(粒子物理) 凝聚态物理 电极 物理 量子力学 粒子物理学 复合材料
作者
Zongquan Gu,Shishir Pandya,Atanu Samanta,Shi Liu,Geoffrey Xiao,Cedric J. G. Meyers,Anoop R. Damodaran,Haim Barak,Arvind Dasgupta,Sahar Saremi,A. Polemi,Liyan Wu,Adrian Podpirka,Alexandria Will‐Cole,Christopher J. Hawley,Peter K. Davies,R.A. York,Ilya Grinberg,Lane W. Martin,Jonathan E. Spanier
出处
期刊:Nature [Springer Nature]
卷期号:560 (7720): 622-627 被引量:116
标识
DOI:10.1038/s41586-018-0434-2
摘要

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1–8 gigahertz) is achieved in an individual device—a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices. The domain-wall structure and dynamics are found to enhance, rather than inhibit, the high-frequency performance of an intrinsically tunable material, obtaining ultralow loss and exceptional frequency selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助性感的面条采纳,获得10
刚刚
Hello应助再睡一夏采纳,获得10
刚刚
暖暖完成签到,获得积分10
刚刚
刚刚
善学以致用应助refrain采纳,获得10
1秒前
1秒前
1秒前
houpu发布了新的文献求助10
1秒前
Zhao0112发布了新的文献求助30
1秒前
2秒前
徐执默发布了新的文献求助10
3秒前
华仔应助勤劳的音响采纳,获得10
3秒前
Foremelon发布了新的文献求助10
3秒前
诚心又柔完成签到,获得积分10
4秒前
4秒前
4秒前
迷你的晓槐完成签到,获得积分10
5秒前
192724836发布了新的文献求助10
5秒前
求助人员发布了新的文献求助10
5秒前
kjdgahdg发布了新的文献求助10
5秒前
5秒前
天天快乐应助libracong采纳,获得20
5秒前
6秒前
7秒前
LG关闭了LG文献求助
7秒前
7秒前
zimu012发布了新的文献求助10
7秒前
phobeeee完成签到 ,获得积分10
8秒前
桐桐应助yang采纳,获得10
9秒前
伊小美发布了新的文献求助10
9秒前
重要亦竹发布了新的文献求助10
9秒前
9秒前
Hongjun发布了新的文献求助30
9秒前
舒服的善若完成签到 ,获得积分10
9秒前
peikyang完成签到 ,获得积分10
9秒前
赘婿应助cardiomyocytes采纳,获得10
10秒前
交大市长完成签到,获得积分10
11秒前
11秒前
耿新冉发布了新的文献求助10
11秒前
漂亮的人人人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002