Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA)

小桶 转移 基因 骨肉瘤 医学 基因本体论 计算生物学 机制(生物学) 基因表达 基因组 生物信息学 癌症 癌症研究 生物 遗传学 内科学 哲学 认识论
作者
Honglai Tian,Dong-Hui Guan,Jianmin Li
出处
期刊:Medicine [Wolters Kluwer]
卷期号:97 (24): e10781-e10781 被引量:50
标识
DOI:10.1097/md.0000000000010781
摘要

Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的书南关注了科研通微信公众号
2秒前
3秒前
4秒前
Four_twos完成签到,获得积分10
4秒前
5秒前
Hang发布了新的文献求助10
5秒前
大红红蝴蝶公主完成签到 ,获得积分10
5秒前
隐形曼青应助机灵飞兰采纳,获得10
6秒前
伶俐雨泽完成签到,获得积分10
6秒前
7秒前
BIGDUCK发布了新的文献求助10
7秒前
饱满一手完成签到 ,获得积分10
7秒前
伶俐雨泽发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助Desamin采纳,获得10
10秒前
王俊博完成签到,获得积分10
11秒前
大个应助bobo采纳,获得10
11秒前
11秒前
14秒前
LY发布了新的文献求助10
15秒前
15秒前
初心完成签到,获得积分10
16秒前
16秒前
abcdefg完成签到 ,获得积分10
16秒前
Ava应助朱向阳采纳,获得10
16秒前
jimjimjim111发布了新的文献求助10
16秒前
17秒前
随意完成签到,获得积分10
17秒前
雨宿完成签到,获得积分10
17秒前
17秒前
研究生完成签到,获得积分10
18秒前
petrichor发布了新的文献求助30
19秒前
充电宝应助jimjimjim111采纳,获得10
22秒前
Desamin发布了新的文献求助10
22秒前
孝顺的青筠完成签到,获得积分10
22秒前
nozero应助科研通管家采纳,获得30
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196