The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features

人工智能 Lasso(编程语言) 回归 样本量测定 机器学习 弹性网正则化 回归分析 支持向量机 计算机科学 线性回归 稳健回归 统计 特征选择 模式识别(心理学) 算法 数学 万维网
作者
Zaixu Cui,Gaolang Gong
出处
期刊:NeuroImage [Elsevier]
卷期号:178: 622-637 被引量:293
标识
DOI:10.1016/j.neuroimage.2018.06.001
摘要

Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋芋发布了新的文献求助10
刚刚
1秒前
叙温雨发布了新的文献求助10
2秒前
香菜重度爱好者完成签到 ,获得积分10
3秒前
3秒前
haha发布了新的文献求助10
3秒前
有机合成学渣完成签到,获得积分10
4秒前
zzz发布了新的文献求助10
5秒前
7秒前
7秒前
zhanks发布了新的文献求助10
8秒前
10秒前
11秒前
dzz发布了新的文献求助30
12秒前
kiki发布了新的文献求助10
13秒前
下次一定发布了新的文献求助10
14秒前
14秒前
huanger发布了新的文献求助10
14秒前
ding应助LisaZhuo采纳,获得10
18秒前
脑洞疼应助77采纳,获得10
19秒前
苏书白应助洋芋采纳,获得10
21秒前
浪荡胭脂马完成签到,获得积分10
21秒前
万能图书馆应助叙温雨采纳,获得10
21秒前
21秒前
23秒前
quhayley应助哎呀我去采纳,获得10
23秒前
quhayley应助woon采纳,获得10
25秒前
清秀千山发布了新的文献求助10
29秒前
科研通AI2S应助风蓝采纳,获得10
29秒前
英俊的铭应助Lynnlovelove采纳,获得10
30秒前
bbbbfffff完成签到,获得积分20
31秒前
31秒前
31秒前
haha完成签到,获得积分10
33秒前
感谢yihui1113转发科研通微信,获得积分50
33秒前
清秀千山完成签到,获得积分10
34秒前
大模型应助kiki采纳,获得10
36秒前
77发布了新的文献求助10
38秒前
华仔应助天行健采纳,获得10
39秒前
Akim应助Hungrylunch采纳,获得10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706