The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features

人工智能 Lasso(编程语言) 回归 样本量测定 机器学习 弹性网正则化 回归分析 支持向量机 计算机科学 线性回归 稳健回归 统计 特征选择 模式识别(心理学) 算法 数学 万维网
作者
Zaixu Cui,Gaolang Gong
出处
期刊:NeuroImage [Elsevier BV]
卷期号:178: 622-637 被引量:293
标识
DOI:10.1016/j.neuroimage.2018.06.001
摘要

Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lv发布了新的文献求助10
刚刚
1秒前
yizhiGao完成签到,获得积分10
1秒前
2秒前
2秒前
草莓奶冻完成签到,获得积分10
2秒前
Qianyun发布了新的文献求助30
2秒前
是江江哥啊完成签到,获得积分10
2秒前
小星历险记完成签到 ,获得积分10
2秒前
icanccwhite完成签到,获得积分10
2秒前
就很j完成签到,获得积分10
3秒前
侯mm发布了新的文献求助10
3秒前
Lucas应助吗喽采纳,获得10
3秒前
三月雪卿发布了新的文献求助30
3秒前
3秒前
2041完成签到,获得积分10
4秒前
5秒前
小赵发布了新的文献求助10
5秒前
fff发布了新的文献求助10
5秒前
5秒前
5秒前
英姑应助mariawang采纳,获得30
6秒前
shlw完成签到,获得积分10
7秒前
7秒前
鱼叮叮完成签到,获得积分10
8秒前
9秒前
英俊的铭应助fff采纳,获得10
9秒前
侯mm完成签到,获得积分10
9秒前
9秒前
晨雾完成签到 ,获得积分10
9秒前
10秒前
万能图书馆应助陶军辉采纳,获得10
10秒前
10秒前
tangpc完成签到,获得积分10
11秒前
oldjeff发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
默默雅阳发布了新的文献求助30
13秒前
三月雪卿完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345