亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features

人工智能 Lasso(编程语言) 回归 样本量测定 机器学习 弹性网正则化 回归分析 支持向量机 计算机科学 线性回归 稳健回归 统计 特征选择 模式识别(心理学) 算法 数学 万维网
作者
Zaixu Cui,Gaolang Gong
出处
期刊:NeuroImage [Elsevier]
卷期号:178: 622-637 被引量:293
标识
DOI:10.1016/j.neuroimage.2018.06.001
摘要

Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33完成签到,获得积分10
7秒前
12秒前
量子星尘发布了新的文献求助10
18秒前
溜溜发布了新的文献求助10
30秒前
33秒前
36秒前
Akim应助溜溜采纳,获得10
39秒前
ZTK发布了新的文献求助20
41秒前
51秒前
ZTK完成签到,获得积分10
53秒前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
Suzanne完成签到,获得积分10
1分钟前
1分钟前
幽默棒球发布了新的文献求助10
1分钟前
1分钟前
2分钟前
打打应助兴奋的菠萝采纳,获得10
2分钟前
溜溜发布了新的文献求助10
2分钟前
香蕉觅云应助koubi采纳,获得10
2分钟前
wanci应助白华苍松采纳,获得10
2分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
迷途小书童应助徐甜采纳,获得10
2分钟前
2分钟前
ding应助Marciu33采纳,获得10
2分钟前
2分钟前
2分钟前
清浅完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助跳跃的冰淇淋采纳,获得10
2分钟前
21145077发布了新的文献求助10
2分钟前
3分钟前
koubi完成签到,获得积分20
3分钟前
koubi发布了新的文献求助10
3分钟前
Lucas应助21145077采纳,获得10
3分钟前
3分钟前
花陵完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509593
求助须知:如何正确求助?哪些是违规求助? 4604436
关于积分的说明 14489773
捐赠科研通 4539232
什么是DOI,文献DOI怎么找? 2487386
邀请新用户注册赠送积分活动 1469853
关于科研通互助平台的介绍 1442062