亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features

人工智能 Lasso(编程语言) 回归 样本量测定 机器学习 弹性网正则化 回归分析 支持向量机 计算机科学 线性回归 稳健回归 统计 特征选择 模式识别(心理学) 算法 数学 万维网
作者
Zaixu Cui,Gaolang Gong
出处
期刊:NeuroImage [Elsevier]
卷期号:178: 622-637 被引量:293
标识
DOI:10.1016/j.neuroimage.2018.06.001
摘要

Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
6秒前
8秒前
10秒前
George发布了新的文献求助10
14秒前
lemon发布了新的文献求助10
16秒前
wanci应助George采纳,获得10
23秒前
v哈哈完成签到 ,获得积分10
28秒前
sun给sun的求助进行了留言
31秒前
41秒前
sun给sun的求助进行了留言
52秒前
1分钟前
George发布了新的文献求助10
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
充电宝应助酷炫灰狼采纳,获得10
2分钟前
李爱国应助可靠的寒风采纳,获得10
2分钟前
TT完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
sun发布了新的文献求助10
2分钟前
林一发布了新的文献求助10
2分钟前
Hello应助雾里采纳,获得10
2分钟前
2分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
3分钟前
Criminology34应助林一采纳,获得10
3分钟前
3分钟前
酷炫灰狼发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
蜜汁章鱼丸完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399