Activation of CO2 at the electrode–electrolyte interface by a co-adsorbed cation and an electric field

格式化 化学 离解(化学) 电解质 催化作用 吸附 密度泛函理论 无机化学 电场 化学物理 金属 羧酸盐 电极 物理化学 计算化学 立体化学 有机化学 物理 量子力学
作者
И. В. Чернышова,Sathish Ponnurangam
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:21 (17): 8797-8807 被引量:24
标识
DOI:10.1039/c8cp07807f
摘要

Carboxylate *CO2- has recently been identified as the first intermediate of the CO2 electroreduction independent of the reaction pathway. However, on the fundamental level, the structural and electronic properties of *CO2- remain poorly understood especially under the electrocatalytic conditions, which limits our capacity to rationally control the transformation of this reaction intermediate to CO or formate. To close this gap, we model using density functional theory (DFT) the interactions of *CO2- with the copper Cu(111) surface and a co-adsorbed sodium cation in the electric double layer (EDL), as well as the effects of electrode potential on these interactions. We demonstrate that *CO2- is activated by a co-adsorbed alkali cation most strongly when it forms with the cation a noncovalent bond (ion pair), where the cation is coordinated in the on-top position. The most stable structure of this ion pair with a sodium cation is hydration-shared. An external negative electric field not only enhances activation of *CO2- but also tilts it in the *CO2- plane, elongating the metal-C bond and contracting the metal-O bond. This tilting facilitates hydrogenation of the C atom and dissociation of the surface-coordinated C-O bond. Based on a detailed analysis of the projected density of states (pDOS), we interpret these findings in terms of electrostatic and chemical effects. The provided insights can help understand the relationship between properties of the catalytic system and its catalytic activity in the CO2 conversion to CO and formate, and hence help develop new CO2 electroreduction catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大大完成签到,获得积分10
2秒前
2秒前
2秒前
Xiaoxiao应助greenPASS666采纳,获得10
2秒前
现代的秋白完成签到,获得积分10
2秒前
从容的盼晴完成签到,获得积分10
2秒前
scvrl完成签到,获得积分10
3秒前
3秒前
楼寒天发布了新的文献求助10
3秒前
请叫我风吹麦浪应助C2采纳,获得10
5秒前
xlj发布了新的文献求助10
5秒前
5秒前
迷路白桃完成签到,获得积分10
6秒前
kento发布了新的文献求助30
6秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
6秒前
小豆包科研冲刺者完成签到,获得积分10
6秒前
黄饱饱完成签到,获得积分10
7秒前
7秒前
传奇3应助CO2采纳,获得10
8秒前
9秒前
称心乐枫完成签到,获得积分10
10秒前
10秒前
22发布了新的文献求助10
10秒前
berry发布了新的文献求助10
10秒前
kingmin应助毛慢慢采纳,获得10
11秒前
完美世界应助顺利鱼采纳,获得10
12秒前
搜集达人应助招财不肥采纳,获得10
13秒前
sweetbearm应助李秋静采纳,获得10
13秒前
Michael_li完成签到,获得积分10
13秒前
whs完成签到,获得积分10
15秒前
科研通AI5应助xlj采纳,获得10
16秒前
再干一杯发布了新的文献求助10
16秒前
17秒前
满意的天完成签到 ,获得积分10
17秒前
luoshiwen完成签到,获得积分10
17秒前
落寞的觅柔完成签到,获得积分10
19秒前
20秒前
LUNWENREQUEST发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808