材料科学
炭黑
淡出
电极
分层(地质)
锂(药物)
碳纤维
电解质
电池(电)
粒子(生态学)
纳米技术
复合材料
复合数
化学
计算机科学
物理化学
俯冲
量子力学
天然橡胶
功率(物理)
古生物学
内分泌学
地质学
物理
操作系统
海洋学
生物
构造学
医学
作者
Simon Müller,Patrick Pietsch,Ben-Elias Brandt,Paul Baade,Vincent De Andrade,Francesco De Carlo,Vanessa Wood
标识
DOI:10.1038/s41467-018-04477-1
摘要
Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI