表面改性
化学
三乙氧基硅烷
乙二醇
聚合物
纤维连接蛋白
组织工程
粘附
生物分子
高分子化学
化学工程
材料科学
细胞外基质
有机化学
生物化学
生物医学工程
物理化学
工程类
医学
作者
SARAH RICHARDSON,Thomas M. Rawlings,Joanne Muter,Marc Walker,Jan J. Brosens,Neil R. Cameron,Ahmed M. Eissa
标识
DOI:10.1002/mabi.201800351
摘要
A novel strategy for the surface functionalization of emulsion-templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine-reactive N-hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N-sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sulfo-SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6-aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis-amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X-ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion-promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin-conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types.
科研通智能强力驱动
Strongly Powered by AbleSci AI