抗生素
抗生素耐药性
活性氧
微生物学
生物
细菌
遗传学
作者
Xiangjin Li,Yanxia Zhong,Feng Yao
出处
期刊:PubMed
日期:2018-04-06
卷期号:52 (4): 446-450
标识
DOI:10.3760/cma.j.issn.0253.9624.2018.04.022
摘要
A growing body of diversified antibiotic resistances raises a significant challenge to anti-infection clinical therapeutics. The emergence of superbugs carrying MCR-1/2 or NDM-1 determinants underlines the importance and urgency in elucidation of molecular mechanisms shared by antibiotic resistances. It is aware that different classes of bactericidal antibiotics consistently stimulate the production of deleterious reactive oxygen species (ROS), which are accompanied with metabolic disturbance. The different destinations of ROS determine its consequence on bacterial fate. Here, we review antibiotic-induced production, progression and transformation of ROS, as well as its role in the development of antibiotic resistance. Additionally, we anticipate that mesosome-like structures-aided exclusion of hydrogen peroxide might represent a previously-unknown mechanism for antibiotic resistance. This mini-review is aiming to present an update overview on antibiotic resistance and provide clues to the development of novel antibiotics.近年来,细菌耐药现象日渐严重,给抗感染治疗带来重大挑战。携带MCR-1/2或NDM-1等耐药基因的超级细菌的出现,使共性耐药机制的研究迫在眉睫。各类抗生素均诱导细菌代谢的变化,促进活性氧的产生,这些活性氧的水平及过氧化氢等分子的转化方向,决定了活性氧的作用是促进细菌损伤乃至死亡,亦或是诱导突变导致细菌耐药性的产生。本文讨论了抗生素诱导的活性氧的产生、转化及其对耐药发生发展的贡献,并阐述了抗生素诱导形成的间体膜囊通过携带大量过氧化氢外排,使细菌实现耐药的新途径。我们对活性氧参与细菌耐药机制的阐明,将提高抗生素处理的有效性,并为开发新的抗菌药物提供策略。.
科研通智能强力驱动
Strongly Powered by AbleSci AI