数学
勒让德多项式
离散化
光谱法
伽辽金法
偏微分方程
数学分析
分数阶微积分
勒让德小波
订单(交换)
准确度顺序
勒让德函数
扩散方程
应用数学
微分方程
勒让德方程
特征线法
有限元法
经济
热力学
小波变换
人工智能
服务(商务)
经济
物理
小波
离散小波变换
计算机科学
财务
作者
Mingfa Fei,Chengming Huang
标识
DOI:10.1080/00207160.2019.1608968
摘要
In this paper, we consider the Galerkin–Legendre spectral method for solving the two-dimensional distributed-order time fractional fourth-order partial differential equation. By utilizing the composite Simpson formula to discretize the distributed-order integral, we transform the considered equation into a multi-term time fractional sub-diffusion equation. Then the L2-1σ formula is used to approximate the multi-term Caputo fractional derivatives and the Legendre spectral method is employed for the spatial discretization. The scheme is proved to be unconditionally stable and convergent in both L2- and L∞-norms with fourth-order accuracy in distributed order, second-order accuracy in time and spectral accuracy in space. Finally, some numerical tests are performed to verify the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI