Multimodal Optimization

计算机科学
作者
Mike Preuß
标识
DOI:10.1145/2739482.2756572
摘要

Multimodal optimization is currently getting established as a research direction that collects approaches from various domains of evolutionary computation that strive for delivering multiple very good solutions at once. We start with discussing why this is actually useful and therefore provide some real-world examples. From that on, we set up several scenarios and list currently employed and potentially available performance measures. This part also calls for user interaction: currently, it is very open what the actual targets of multimodal optimization shall be and how the algorithms shall be compared experimentally. In-tutorial discussion of this topic will be encouraged. As there has been little work on theory (not runtime complexity; rather the limits of different mechanisms) in the area, we present a high-level modelling approach that provides some insight in how niching can actually improve optimization methods if it fulfils certain conditions. While the algorithmic ideas for multimodal optimization (as niching) originally stem from biology and have been introduced into evolutionary algorithms from the 70s on, we only now see the consolidation of the field. The vast number of available approaches is getting sorted into collections and taxonomies start to emerge. We present our version of a taxonomy, also taking older but surpisingly modern global optimization approaches into account. We highlight some single mechanisms as clustering, multiobjectivization and archives that can be used as additions to existing algorithms or building blocks of new ones. We also discuss recent relevant competitions and their results, point to available software and outline the possible future developments in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小五完成签到 ,获得积分20
1秒前
云无意发布了新的文献求助10
1秒前
黑豆子完成签到,获得积分10
2秒前
3秒前
Paul111完成签到,获得积分10
4秒前
jzt12138发布了新的文献求助10
5秒前
5秒前
青青闭上眼睛完成签到,获得积分10
7秒前
7秒前
英姑应助fufu采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
大豆子完成签到,获得积分10
11秒前
浮游应助青青闭上眼睛采纳,获得10
11秒前
11秒前
王贤平发布了新的文献求助10
11秒前
12秒前
14秒前
万能图书馆应助清脆安南采纳,获得10
14秒前
天真苑睐完成签到,获得积分10
15秒前
Leo完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Azure完成签到,获得积分10
16秒前
Akim应助美好斓采纳,获得10
19秒前
遇见发布了新的文献求助10
19秒前
小豆子完成签到,获得积分10
21秒前
Jane完成签到 ,获得积分10
23秒前
24秒前
24秒前
26秒前
TL111发布了新的文献求助10
26秒前
26秒前
wsd关闭了wsd文献求助
27秒前
boaster完成签到,获得积分10
27秒前
28秒前
gsq完成签到,获得积分10
30秒前
热情的未来完成签到,获得积分10
31秒前
红豆子完成签到,获得积分10
31秒前
0000完成签到,获得积分10
31秒前
清脆安南发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109