Multimodal Optimization

计算机科学
作者
Mike Preuß
标识
DOI:10.1145/2739482.2756572
摘要

Multimodal optimization is currently getting established as a research direction that collects approaches from various domains of evolutionary computation that strive for delivering multiple very good solutions at once. We start with discussing why this is actually useful and therefore provide some real-world examples. From that on, we set up several scenarios and list currently employed and potentially available performance measures. This part also calls for user interaction: currently, it is very open what the actual targets of multimodal optimization shall be and how the algorithms shall be compared experimentally. In-tutorial discussion of this topic will be encouraged. As there has been little work on theory (not runtime complexity; rather the limits of different mechanisms) in the area, we present a high-level modelling approach that provides some insight in how niching can actually improve optimization methods if it fulfils certain conditions. While the algorithmic ideas for multimodal optimization (as niching) originally stem from biology and have been introduced into evolutionary algorithms from the 70s on, we only now see the consolidation of the field. The vast number of available approaches is getting sorted into collections and taxonomies start to emerge. We present our version of a taxonomy, also taking older but surpisingly modern global optimization approaches into account. We highlight some single mechanisms as clustering, multiobjectivization and archives that can be used as additions to existing algorithms or building blocks of new ones. We also discuss recent relevant competitions and their results, point to available software and outline the possible future developments in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hrzmlily完成签到,获得积分10
刚刚
苏瑞完成签到,获得积分10
刚刚
1秒前
咖可乐完成签到,获得积分10
1秒前
勤qin发布了新的文献求助10
2秒前
2秒前
gloval发布了新的文献求助10
2秒前
谦让的萤完成签到 ,获得积分10
3秒前
SG完成签到,获得积分10
3秒前
4秒前
4秒前
医疗搜救犬完成签到 ,获得积分10
4秒前
体贴西装完成签到 ,获得积分10
4秒前
LZH发布了新的文献求助10
4秒前
5秒前
muyassar完成签到,获得积分10
6秒前
Canonical_SMILES完成签到 ,获得积分10
6秒前
英姑应助呆萌的青烟采纳,获得10
6秒前
冷酷的寒天完成签到,获得积分20
7秒前
老猫完成签到,获得积分10
7秒前
晚霞完成签到 ,获得积分10
8秒前
Jasper应助芷莯采纳,获得10
8秒前
zxt发布了新的文献求助10
8秒前
8秒前
充电宝应助小Yang采纳,获得10
10秒前
酷波er应助LZH采纳,获得10
10秒前
10秒前
木木完成签到,获得积分10
10秒前
10秒前
奥利给完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
WZH完成签到,获得积分10
15秒前
小黄瓜896发布了新的文献求助10
15秒前
哈哈哈哈哈哈完成签到,获得积分10
16秒前
王青青完成签到,获得积分10
17秒前
邢晓彤完成签到 ,获得积分10
17秒前
芷莯发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806