Multimodal Optimization

计算机科学
作者
Mike Preuß
标识
DOI:10.1145/2739482.2756572
摘要

Multimodal optimization is currently getting established as a research direction that collects approaches from various domains of evolutionary computation that strive for delivering multiple very good solutions at once. We start with discussing why this is actually useful and therefore provide some real-world examples. From that on, we set up several scenarios and list currently employed and potentially available performance measures. This part also calls for user interaction: currently, it is very open what the actual targets of multimodal optimization shall be and how the algorithms shall be compared experimentally. In-tutorial discussion of this topic will be encouraged. As there has been little work on theory (not runtime complexity; rather the limits of different mechanisms) in the area, we present a high-level modelling approach that provides some insight in how niching can actually improve optimization methods if it fulfils certain conditions. While the algorithmic ideas for multimodal optimization (as niching) originally stem from biology and have been introduced into evolutionary algorithms from the 70s on, we only now see the consolidation of the field. The vast number of available approaches is getting sorted into collections and taxonomies start to emerge. We present our version of a taxonomy, also taking older but surpisingly modern global optimization approaches into account. We highlight some single mechanisms as clustering, multiobjectivization and archives that can be used as additions to existing algorithms or building blocks of new ones. We also discuss recent relevant competitions and their results, point to available software and outline the possible future developments in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牂牂完成签到 ,获得积分10
1秒前
慕青应助欣喜机器猫采纳,获得10
2秒前
3秒前
科研通AI6应助llllll采纳,获得10
3秒前
4秒前
5秒前
8秒前
沐兮发布了新的文献求助10
8秒前
dopamine发布了新的文献求助10
8秒前
百川发布了新的文献求助10
9秒前
小米粥完成签到,获得积分10
9秒前
9秒前
小蘑菇应助蓓蓓0303采纳,获得10
10秒前
大河细流完成签到,获得积分10
12秒前
FashionBoy应助1234567xjy采纳,获得10
12秒前
12秒前
13秒前
甜甜电源发布了新的文献求助10
13秒前
小C完成签到,获得积分10
14秒前
123完成签到,获得积分10
14秒前
热情铭完成签到 ,获得积分10
14秒前
14秒前
1111应助dopamine采纳,获得10
14秒前
天天发布了新的文献求助10
15秒前
戴帽子的花盆完成签到,获得积分10
15秒前
why完成签到 ,获得积分10
15秒前
han完成签到,获得积分10
15秒前
梁云发布了新的文献求助10
16秒前
小二郎应助甜菜采纳,获得10
17秒前
Akim应助腼腆的小女孩采纳,获得10
17秒前
Orange应助戴昕东采纳,获得10
17秒前
17秒前
18秒前
研友_VZG7GZ应助沐兮采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
xiaohu完成签到,获得积分10
20秒前
21秒前
22秒前
liuliu发布了新的文献求助10
22秒前
yyy1234567完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616