Multimodal Optimization

计算机科学
作者
Mike Preuß
标识
DOI:10.1145/2739482.2756572
摘要

Multimodal optimization is currently getting established as a research direction that collects approaches from various domains of evolutionary computation that strive for delivering multiple very good solutions at once. We start with discussing why this is actually useful and therefore provide some real-world examples. From that on, we set up several scenarios and list currently employed and potentially available performance measures. This part also calls for user interaction: currently, it is very open what the actual targets of multimodal optimization shall be and how the algorithms shall be compared experimentally. In-tutorial discussion of this topic will be encouraged. As there has been little work on theory (not runtime complexity; rather the limits of different mechanisms) in the area, we present a high-level modelling approach that provides some insight in how niching can actually improve optimization methods if it fulfils certain conditions. While the algorithmic ideas for multimodal optimization (as niching) originally stem from biology and have been introduced into evolutionary algorithms from the 70s on, we only now see the consolidation of the field. The vast number of available approaches is getting sorted into collections and taxonomies start to emerge. We present our version of a taxonomy, also taking older but surpisingly modern global optimization approaches into account. We highlight some single mechanisms as clustering, multiobjectivization and archives that can be used as additions to existing algorithms or building blocks of new ones. We also discuss recent relevant competitions and their results, point to available software and outline the possible future developments in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾海发布了新的文献求助10
刚刚
feng发布了新的文献求助10
刚刚
七七发布了新的文献求助10
刚刚
Kunqi发布了新的文献求助10
刚刚
善学以致用应助tu采纳,获得10
刚刚
月亮完成签到,获得积分10
1秒前
潇洒的藏今完成签到,获得积分20
1秒前
可爱的函函应助sc采纳,获得10
3秒前
乐乐应助sc采纳,获得10
3秒前
领导范儿应助三德采纳,获得10
3秒前
sjsuA完成签到,获得积分10
3秒前
ding应助Mostafa采纳,获得10
3秒前
4秒前
用头打碟完成签到,获得积分10
5秒前
喜庆发布了新的文献求助10
5秒前
5秒前
duwang完成签到,获得积分10
5秒前
所所应助俊逸鸣凤采纳,获得10
6秒前
6秒前
Circle发布了新的文献求助10
6秒前
万能图书馆应助CTF采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助美满花生采纳,获得10
8秒前
司空大有应助彭彭采纳,获得10
9秒前
优美谷兰发布了新的文献求助10
9秒前
9秒前
BL发布了新的文献求助10
10秒前
11秒前
22222发布了新的文献求助30
11秒前
13秒前
重要大娘发布了新的文献求助10
13秒前
14秒前
14秒前
ww发布了新的文献求助10
15秒前
15秒前
15秒前
liangzhang02发布了新的文献求助10
15秒前
17秒前
17秒前
hkh发布了新的文献求助10
17秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083403
求助须知:如何正确求助?哪些是违规求助? 2736768
关于积分的说明 7542379
捐赠科研通 2386033
什么是DOI,文献DOI怎么找? 1265316
科研通“疑难数据库(出版商)”最低求助积分说明 613035
版权声明 597816