亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 地理 统计
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:61
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUAN完成签到,获得积分10
1秒前
CipherSage应助ccczzz采纳,获得30
3秒前
Ava应助khan采纳,获得10
9秒前
10秒前
Hello应助若离采纳,获得10
11秒前
XUAN发布了新的文献求助10
11秒前
冷HorToo完成签到 ,获得积分10
15秒前
16秒前
共享精神应助khan采纳,获得10
28秒前
ccczzz完成签到,获得积分10
42秒前
Spine完成签到,获得积分10
42秒前
46秒前
GPTea应助khan采纳,获得10
52秒前
ccczzz发布了新的文献求助30
52秒前
内向如松发布了新的文献求助30
58秒前
59秒前
1分钟前
若离发布了新的文献求助10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
aveturner完成签到,获得积分10
1分钟前
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
开胃咖喱发布了新的文献求助10
1分钟前
顾矜应助香奈宝采纳,获得10
1分钟前
Affenyi发布了新的文献求助10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
1分钟前
科研通AI5应助khan采纳,获得10
1分钟前
枫于林完成签到 ,获得积分0
1分钟前
1分钟前
若离完成签到,获得积分10
1分钟前
棠真完成签到 ,获得积分0
1分钟前
PrayOne完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186017
求助须知:如何正确求助?哪些是违规求助? 4371340
关于积分的说明 13612062
捐赠科研通 4223700
什么是DOI,文献DOI怎么找? 2316584
邀请新用户注册赠送积分活动 1315199
关于科研通互助平台的介绍 1264220