Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 统计 地理
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:73
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归雁完成签到,获得积分10
1秒前
1秒前
太阳发布了新的文献求助10
1秒前
潇洒荷花完成签到 ,获得积分10
1秒前
2秒前
TS完成签到,获得积分10
2秒前
yjwang完成签到,获得积分10
3秒前
3秒前
小胡完成签到,获得积分10
3秒前
李健的小迷弟应助Hearing胡采纳,获得10
4秒前
4秒前
炒栗子发布了新的文献求助10
5秒前
5秒前
烂漫念柏发布了新的文献求助10
7秒前
怕黑的井完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6.1应助高贵觅风采纳,获得30
10秒前
清脆泥猴桃完成签到,获得积分10
10秒前
ccy发布了新的文献求助10
10秒前
xiaozhang完成签到,获得积分10
10秒前
sakiecon完成签到,获得积分10
11秒前
12秒前
纯真哈密瓜完成签到 ,获得积分20
12秒前
郑匕完成签到,获得积分10
12秒前
鄙视注册完成签到,获得积分0
13秒前
小夏饭桶完成签到,获得积分10
14秒前
zhenzhangfynu完成签到,获得积分10
15秒前
烟花应助邵邵采纳,获得10
15秒前
Ava应助炒栗子采纳,获得10
16秒前
忍冬半夏完成签到,获得积分10
17秒前
17秒前
郑匕发布了新的文献求助10
18秒前
完美世界应助清秀的沉鱼采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
酷波er应助Ray采纳,获得10
20秒前
20秒前
22秒前
23秒前
小马甲应助Angel采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722