Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 地理 统计
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:58
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Loik发布了新的文献求助10
刚刚
刚刚
拾伍发布了新的文献求助10
1秒前
TianyuYu完成签到,获得积分20
1秒前
2秒前
2秒前
LLL完成签到,获得积分10
3秒前
世隐完成签到,获得积分10
3秒前
3秒前
嗷呜嗷呜完成签到,获得积分10
3秒前
汉堡包应助伯赏夜南采纳,获得10
3秒前
Coreyl010发布了新的文献求助10
4秒前
希望天下0贩的0应助牛牛采纳,获得10
4秒前
iii完成签到,获得积分20
5秒前
slk发布了新的文献求助10
5秒前
yoyo完成签到,获得积分10
5秒前
Owen应助豆子采纳,获得10
5秒前
RC_Wang应助LDDD采纳,获得10
6秒前
TianyuYu发布了新的文献求助10
6秒前
搞怪向彤发布了新的文献求助10
6秒前
7秒前
桃子今天吃饱了应助Loik采纳,获得10
8秒前
cc发布了新的文献求助10
8秒前
vipggl发布了新的文献求助10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
小二郎应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
ZhenpuWang发布了新的文献求助10
10秒前
10秒前
Owen应助秋中雨采纳,获得10
10秒前
甜甜谷丝发布了新的文献求助10
10秒前
haujiun发布了新的文献求助10
11秒前
12秒前
可爱安柏完成签到,获得积分10
12秒前
yyy关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514792
求助须知:如何正确求助?哪些是违规求助? 3097089
关于积分的说明 9234132
捐赠科研通 2792114
什么是DOI,文献DOI怎么找? 1532275
邀请新用户注册赠送积分活动 711890
科研通“疑难数据库(出版商)”最低求助积分说明 707045