清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 统计 地理
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:73
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盈盈发布了新的文献求助10
12秒前
xiaozou55完成签到 ,获得积分10
14秒前
坚定盈发布了新的文献求助10
16秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
cgs完成签到 ,获得积分10
58秒前
乐乐应助Moona采纳,获得10
1分钟前
彭于晏应助银鱼在游采纳,获得10
1分钟前
hellokitty完成签到,获得积分10
1分钟前
一颗酒窝完成签到 ,获得积分10
1分钟前
zhangjw完成签到 ,获得积分0
1分钟前
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kean1943完成签到,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
盈盈发布了新的文献求助10
2分钟前
林克完成签到,获得积分10
2分钟前
呆萌冰彤完成签到 ,获得积分10
2分钟前
2分钟前
银鱼在游发布了新的文献求助10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
sevenhill完成签到 ,获得积分0
3分钟前
Orange应助www采纳,获得10
3分钟前
Arctic完成签到 ,获得积分10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
wave8013完成签到 ,获得积分10
3分钟前
3分钟前
两个轮完成签到 ,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
英俊的铭应助ysss0831采纳,获得10
4分钟前
红火完成签到 ,获得积分10
4分钟前
Adc应助科研通管家采纳,获得10
4分钟前
Adc应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349