亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 统计 地理
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:73
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
bc发布了新的文献求助10
23秒前
24秒前
爱u发布了新的文献求助10
29秒前
能干梦安完成签到,获得积分10
32秒前
33秒前
华仔应助爱u采纳,获得10
36秒前
求助人员应助能干梦安采纳,获得10
38秒前
racchellll完成签到 ,获得积分10
38秒前
一只抱枕发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
39秒前
求助人员应助能干梦安采纳,获得10
41秒前
Rainy完成签到 ,获得积分10
50秒前
一只抱枕完成签到,获得积分10
55秒前
上官若男应助调皮的绿真采纳,获得30
1分钟前
xaopng完成签到,获得积分10
1分钟前
大模型应助fay采纳,获得10
1分钟前
叮咚完成签到,获得积分10
1分钟前
魁梧的笑珊完成签到,获得积分10
1分钟前
小二郎应助魁梧的笑珊采纳,获得10
1分钟前
木棉完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
sunny完成签到,获得积分10
1分钟前
1分钟前
2分钟前
胡尼亦八发布了新的文献求助10
2分钟前
叮咚关注了科研通微信公众号
2分钟前
Ava应助胡尼亦八采纳,获得10
2分钟前
2分钟前
优秀的甜菜完成签到,获得积分10
2分钟前
2分钟前
SciGPT应助调皮的绿真采纳,获得10
2分钟前
搞怪的白云完成签到 ,获得积分10
2分钟前
2分钟前
souther完成签到,获得积分0
2分钟前
daguan完成签到,获得积分10
2分钟前
bc完成签到,获得积分10
3分钟前
aaa5a123完成签到 ,获得积分10
3分钟前
充电宝应助小橙采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120