阿霉素
冰片
胶质母细胞瘤
药理学
化学
体内
胶质瘤
血脑屏障
体外
癌症研究
化疗
医学
病理
内科学
中枢神经系统
生物化学
生物
替代医学
生物技术
中医药
作者
Lingwei Meng,Xiaoyang Chu,Haoyue Xing,Xuan Liu,Xin Xin,Liqing Chen,Mingji Jin,Jing Wang,Wei Huang,Zhonggao Gao
标识
DOI:10.1016/j.ijpharm.2019.118485
摘要
Glioblastoma is a grade IV malignant glioma with high recurrence and metastasis and faces a therapeutic obstacle that the blood-brain barrier (BBB) severely hinders the brain entry and efficacy of therapeutic drugs. Previous studies suggest that borneol (BO) has been used to enhance interested drugs to penetrate the BBB. In this study, a borneol-modified nanomicelle delivery system was established to facilitate the brain entry of doxorubicin for glioblastoma therapy. Herein, we firstly conjugated borneol molecules with DSPE-PEG2000-COOH to synthesize a novel carrier DSPE-PEG2000-BO and also characterized its structure. Doxorubicin-loaded nanomicelles (DOX BO-PMs) were prepared using DSPE-PEG2000-BO via electrostatic interaction and the physicochemical properties were investigated. The average particle size and zeta potential of DOX BO-PMs were respectively (14.95 ± 0.17)nm and (-1.27 ± 0.06)mV, and the drug encapsulation efficiency and loading capacity in DOX BO-PMs were (95.69 ± 0.49)% and (14.62 ± 0.39)%, respectively. The drug release of the DOX BO-PMs exhibited a both time- and pH-dependent pattern. The results demonstrated that DOX BO-PMs significantly enhanced the transport efficiency of DOX across the BBB and also exhibited a quick accumulation in the brain tissues. The in vitro anti-proliferation assay results suggested that DOX BO-PMs exerted a strong inhibitory effect on proliferation of glioblastoma cells. Importantly, in vivo antitumor results demonstrated that DOX BO-PMs significantly inhibited the tumor growth and metastasis of glioblastoma. In conclusion, DOX BO-PMs can improve the glioblastoma therapeutic outcomes and become a promising nanodrug candidate for the application of doxorubicin in the field of glioblastoma therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI