Learning to Detect Cognitive Impairment through Digital Games and Machine Learning Techniques

痴呆 认知 认知障碍 构造(python库) 心理学 人口 结构效度 执行职能 认知心理学 混淆 医学 疾病 机器学习 临床心理学 计算机科学 精神科 心理测量学 病理 程序设计语言 环境卫生
作者
Roberto Pérez‐Rodríguez,Manuel J. Fernández Iglesias,Luis Anido,David Facal,Carlos Rivas Costa,Sonia Valladares‐Rodríguez
出处
期刊:Methods of Information in Medicine [Thieme (Methods of Information in Medicine)]
卷期号:57 (04): 197-207 被引量:34
标识
DOI:10.3414/me17-02-0011
摘要

Alzheimer's disease (AD) is one of the most prevalent diseases among the adult population. The early detection of Mild Cognitive Impairment (MCI), which may trigger AD, is essential to slow down the cognitive decline process.This paper presents a suit of serious games that aims at detecting AD and MCI overcoming the limitations of traditional tests, as they are time-consuming, affected by confounding factors that distort the result and usually administered when symptoms are evident and it is too late for preventive measures. The battery, named Panoramix, assesses the main early cognitive markers (i.e., memory, executive functions, attention and gnosias). Regarding its validation, it has been tested with a cohort study of 16 seniors, including AD, MCI and healthy individuals.This first pilot study offered initial evidence about psychometric validity, and more specifically about construct, criterion and external validity. After an analysis using machine learning techniques, findings show a promising 100% rate of success in classification abilities using a subset of three games in the battery. Thus, results are encouraging as all healthy subjects were correctly discriminated from those already suffering AD or MCI.The solid potential of digital serious games and machine learning for the early detection of dementia processes is demonstrated. Such a promising performance encourages further research to eventually introduce this technique for the clinical diagnosis of cognitive impairment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
thl发布了新的文献求助30
1秒前
哈喽发布了新的文献求助20
1秒前
酷波er应助lambo采纳,获得10
1秒前
2秒前
2秒前
lzl发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
自觉紫安发布了新的文献求助10
6秒前
潇洒映冬发布了新的文献求助10
7秒前
悦耳土豆完成签到,获得积分10
8秒前
包凡之发布了新的文献求助10
8秒前
隐形曼青应助lzl采纳,获得10
8秒前
赘婿应助小布丁采纳,获得10
9秒前
10秒前
ACMI完成签到 ,获得积分10
10秒前
Josh发布了新的文献求助10
10秒前
bagai完成签到,获得积分10
12秒前
thl完成签到,获得积分10
14秒前
15秒前
Singularity应助wxyllxx采纳,获得10
16秒前
super chan完成签到,获得积分10
17秒前
17秒前
一一应助跳跃凡桃采纳,获得10
18秒前
atom完成签到,获得积分10
18秒前
20秒前
kami完成签到,获得积分10
20秒前
寻桃阿玉完成签到 ,获得积分10
20秒前
21秒前
科研通AI2S应助清澈水眸采纳,获得10
23秒前
ddj完成签到 ,获得积分10
23秒前
yingying发布了新的文献求助10
25秒前
26秒前
理塘丁真完成签到,获得积分20
28秒前
xy完成签到,获得积分10
28秒前
曾经的丹彤完成签到,获得积分10
30秒前
纸船完成签到,获得积分10
31秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565560
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9427156
捐赠科研通 2839062
什么是DOI,文献DOI怎么找? 1560619
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717606