Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography

脑电图 慢性疼痛 神经反射 静息状态功能磁共振成像 神经科学 大脑活动与冥想 医学 物理医学与康复 疾病 脑深部刺激 心理学 病理生理学 内科学 帕金森病
作者
Son Ta Dinh,Moritz M. Nickel,Laura Tiemann,Elisabeth S. May,Henrik Heitmann,Vanessa D. Hohn,Günther Edenharter,Daniel Utpadel-Fischler,Thomas R. Tölle,Paul Sauseng,Joachim Groß,Markus Ploner
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:160 (12): 2751-2765 被引量:75
标识
DOI:10.1097/j.pain.0000000000001666
摘要

Abstract Chronic pain is a common and severely disabling disease whose treatment is often unsatisfactory. Insights into the brain mechanisms of chronic pain promise to advance the understanding of the underlying pathophysiology and might help to develop disease markers and novel treatments. Here, we systematically exploited the potential of electroencephalography to determine abnormalities of brain function during the resting state in chronic pain. To this end, we performed state-of-the-art analyses of oscillatory brain activity, brain connectivity, and brain networks in 101 patients of either sex suffering from chronic pain. The results show that global and local measures of brain activity did not differ between chronic pain patients and a healthy control group. However, we observed significantly increased connectivity at theta (4-8 Hz) and gamma (>60 Hz) frequencies in frontal brain areas as well as global network reorganization at gamma frequencies in chronic pain patients. Furthermore, a machine learning algorithm could differentiate between patients and healthy controls with an above-chance accuracy of 57%, mostly based on frontal connectivity. These results suggest that increased theta and gamma synchrony in frontal brain areas are involved in the pathophysiology of chronic pain. Although substantial challenges concerning the reproducibility of the findings and the accuracy, specificity, and validity of potential electroencephalography-based disease markers remain to be overcome, our study indicates that abnormal frontal synchrony at theta and gamma frequencies might be promising targets for noninvasive brain stimulation and/or neurofeedback approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狂野的山雁完成签到,获得积分10
刚刚
1秒前
1秒前
欢喜宛丝完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
尚颖茹发布了新的文献求助10
4秒前
在水一方应助明明采纳,获得10
5秒前
善学以致用应助研友_Zr2l4Z采纳,获得10
6秒前
缥缈烙发布了新的文献求助10
6秒前
俭朴大开完成签到,获得积分10
6秒前
北极星发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
ssss发布了新的文献求助10
10秒前
1111发布了新的文献求助20
10秒前
cdz完成签到 ,获得积分10
10秒前
Xhhh发布了新的文献求助30
10秒前
ChouNen完成签到,获得积分10
10秒前
含蓄的明雪应助木白采纳,获得10
11秒前
14秒前
自然枕头完成签到,获得积分10
14秒前
16秒前
小二郎应助南宫誉采纳,获得30
17秒前
研友_Zr2l4Z发布了新的文献求助10
18秒前
北极星完成签到,获得积分10
18秒前
18秒前
Xhhh完成签到,获得积分10
18秒前
蜻蜓完成签到,获得积分10
19秒前
明亮映阳发布了新的文献求助10
20秒前
星star发布了新的文献求助10
21秒前
传奇3应助爱大美采纳,获得10
22秒前
缥缈烙完成签到,获得积分10
23秒前
科研通AI2S应助恩對采纳,获得10
23秒前
wanci应助fjh采纳,获得10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809296
关于积分的说明 7881421
捐赠科研通 2467814
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630502
版权声明 601943