A semi-supervised convolutional neural network-based method for steel surface defect recognition

卷积神经网络 模式识别(心理学) 计算机科学 人工智能 人工神经网络 曲面(拓扑) 数学 几何学
作者
Yiping Gao,Liang Gao,Xinyu Li,Xuguo Yan
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:61: 101825-101825 被引量:159
标识
DOI:10.1016/j.rcim.2019.101825
摘要

Automatic defect recognition is one of the research hotspots in steel production, but most of the current methods focus on supervised learning, which relies on large-scale labeled samples. In some real-world cases, it is difficult to collect and label enough samples for model training, and this might impede the application of most current works. The semi-supervised learning, using both labeled and unlabeled samples for model training, can overcome this problem well. In this paper, a semi-supervised learning method using the convolutional neural network (CNN) is proposed for steel surface defect recognition. The proposed method requires fewer labeled samples, and the unlabeled data can be used to help training. And, the CNN is improved by Pseudo-Label. The experimental results on a benchmark dataset of steel surface defect recognition indicate that the proposed method can achieve good performances with limited labeled data, which achieves an accuracy of 90.7% with 17.53% improvement. Furthermore, the proposed method has been applied to a real-world case from a Chinese steel company, and obtains an accuracy of 86.72% which significantly better than the original method in this workshop.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyj13771316308完成签到,获得积分20
1秒前
小夏完成签到,获得积分10
1秒前
Tang发布了新的文献求助10
2秒前
CHZBH发布了新的文献求助10
2秒前
suzhen完成签到,获得积分10
3秒前
天真初蝶完成签到,获得积分10
4秒前
由清涟完成签到,获得积分10
5秒前
哈尔婧完成签到,获得积分10
9秒前
shawn_89完成签到,获得积分10
10秒前
奈思完成签到 ,获得积分10
11秒前
12秒前
14秒前
dong应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
香蕉觅云应助古芍昂采纳,获得10
16秒前
ED应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
奥特超曼应助科研通管家采纳,获得10
16秒前
Ricey应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
奥特超曼应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
奥特超曼应助科研通管家采纳,获得10
18秒前
18秒前
ED应助科研通管家采纳,获得10
18秒前
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712