亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Aggregation and Demand Prediction

计算机科学 数据挖掘 数据科学
作者
Maxime C. Cohen,Renyu Zhang,Kevin Jiao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:6
标识
DOI:10.2139/ssrn.3411653
摘要

We study how retailers can use data aggregation and clustering to improve demand prediction. High accuracy in demand prediction allows retailers to effectively manage their inventory as well as mitigate stock-outs and excess supply. A typical retail setting involves predicting demand for hundreds of items simultaneously. Although some items have a large amount of historical data, others were recently introduced and, thus, transaction data can be scarce. A common approach is to cluster several items and estimate a joint model for each cluster. In this vein, one can estimate some model parameters by aggregating the data from several items and other parameters at the individual-item level. We propose a practical method referred to as Data Aggregation with Clustering (DAC), which balances the trade-off between data aggregation and model flexibility. DAC allows us to predict demand while optimally identifying the features that should be estimated at the (i) item, (ii) cluster, and (iii) aggregate levels. We show that the DAC algorithm yields a consistent and normal estimate, along with improved prediction errors relative to the decentralized benchmark, which estimates a different model for each item. Using both simulated and real data, we illustrate DAC's improvement in prediction accuracy relative to a wide range of common benchmarks. Interestingly, the DAC algorithm has theoretical and practical advantages and helps retailers uncover meaningful managerial insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
19秒前
小巫发布了新的文献求助10
22秒前
22秒前
23秒前
zhangxr发布了新的文献求助10
25秒前
29秒前
桐桐应助科研通管家采纳,获得30
30秒前
Simon应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
lbjcp3发布了新的文献求助30
33秒前
打打应助zhangxr采纳,获得10
34秒前
46秒前
阿杜阿杜发布了新的文献求助10
50秒前
1分钟前
阿杜阿杜完成签到,获得积分20
1分钟前
asd1576562308完成签到 ,获得积分10
2分钟前
张振希完成签到,获得积分10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
情怀应助白萝卜采纳,获得10
2分钟前
2分钟前
2分钟前
温暖的盼山完成签到 ,获得积分10
2分钟前
张振希发布了新的文献求助10
3分钟前
3分钟前
王桑完成签到 ,获得积分10
3分钟前
kyfbrahha完成签到 ,获得积分10
3分钟前
情怀应助lbjcp3采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
唐唐完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
杰帅发布了新的文献求助10
4分钟前
lbjcp3发布了新的文献求助10
4分钟前
上官若男应助科研通管家采纳,获得10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
英姑应助喝奶茶睡不着采纳,获得10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795287
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146