Data Aggregation and Demand Prediction

计算机科学 数据挖掘 数据科学
作者
Maxime C. Cohen,Renyu Zhang,Kevin Jiao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:6
标识
DOI:10.2139/ssrn.3411653
摘要

We study how retailers can use data aggregation and clustering to improve demand prediction. High accuracy in demand prediction allows retailers to effectively manage their inventory as well as mitigate stock-outs and excess supply. A typical retail setting involves predicting demand for hundreds of items simultaneously. Although some items have a large amount of historical data, others were recently introduced and, thus, transaction data can be scarce. A common approach is to cluster several items and estimate a joint model for each cluster. In this vein, one can estimate some model parameters by aggregating the data from several items and other parameters at the individual-item level. We propose a practical method referred to as Data Aggregation with Clustering (DAC), which balances the trade-off between data aggregation and model flexibility. DAC allows us to predict demand while optimally identifying the features that should be estimated at the (i) item, (ii) cluster, and (iii) aggregate levels. We show that the DAC algorithm yields a consistent and normal estimate, along with improved prediction errors relative to the decentralized benchmark, which estimates a different model for each item. Using both simulated and real data, we illustrate DAC's improvement in prediction accuracy relative to a wide range of common benchmarks. Interestingly, the DAC algorithm has theoretical and practical advantages and helps retailers uncover meaningful managerial insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星完成签到,获得积分10
1秒前
liyizhe完成签到 ,获得积分10
1秒前
1秒前
徐风年完成签到,获得积分10
2秒前
猕猴桃发布了新的文献求助30
3秒前
3秒前
刘源发布了新的文献求助10
3秒前
4秒前
glanceofwind完成签到 ,获得积分10
4秒前
可达燊发布了新的文献求助50
4秒前
Akim应助kk采纳,获得10
4秒前
传奇3应助爱听歌的寄云采纳,获得10
5秒前
xW12123完成签到,获得积分10
5秒前
JamesPei应助三三采纳,获得10
5秒前
5秒前
5秒前
6秒前
hp571完成签到,获得积分10
7秒前
打击8完成签到 ,获得积分10
7秒前
baobao完成签到,获得积分10
7秒前
思源应助爱吃香菜采纳,获得10
9秒前
hp571发布了新的文献求助10
9秒前
10秒前
Ankher发布了新的文献求助10
10秒前
小叶发布了新的文献求助10
10秒前
stronger发布了新的文献求助10
10秒前
10秒前
没有答案发布了新的文献求助10
11秒前
xiaose发布了新的文献求助10
11秒前
背后笑白发布了新的文献求助30
11秒前
Jasper应助甜甜的寻真采纳,获得10
11秒前
淘宝叮咚完成签到,获得积分10
12秒前
田様应助活泼的寄风采纳,获得10
12秒前
Zhanghh87应助风中的惊蛰采纳,获得10
12秒前
Son4904完成签到,获得积分10
12秒前
猕猴桃完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
jm发布了新的文献求助30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635