氧化应激
KEAP1型
细胞保护
姜黄素
神经保护
超氧化物歧化酶
化学
过氧化氢酶
活力测定
药理学
氧化磷酸化
细胞生物学
活性氧
细胞凋亡
生物化学
抗氧化剂
谷胱甘肽
生物
转录因子
基因
作者
Jialin Xu,Leilei Zhou,Qi Weng,Linxia Xiao,Qingyong Li
标识
DOI:10.1016/j.cbi.2019.01.010
摘要
Beta-amyloid (Aβ) has pivotal functions in the pathogenesis of Alzheimer's Disease (AD). In the present study, we adopted an vitro model that involved Aβ25-35-induced oxidative damage in PC12 cells. Aβ25-35 (10 μΜ) treatment for 24 h induced significant cell death and oxidative stress in PC12 cells, as evidenced by cell viability reduction, LDH release, ROS accumulation and increased production MDA. (1E,4E)-1, 5-bis(4-hydroxy-3-methoxyphenyl) penta-1, 4-dien-3-one (CB) and (1E, 4E)-1-(3, 4-dimethoxyphenyl)-5-(4-hydroxy-3, 5-dime-thoxyphenyl) Penta-1, 4-dien-3-one (FE), two Curcumin (Cur) analogues displayed neuroprotective effects against Aβ25-35-induced oxidative damage and cellular apoptosis in PC12 cells. Here, we investigated three different treatment ways of CB and FE. It was interesting that post-treatment of CB and FE (restoring way) showed similar effect to the preventive way, while attenuating way did not show any protective effect. We found that low dose CB and FE increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1 (HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in PC 12 cells. In addition, CB and FE promoted the translation of Nrf2 into nuclear and enhanced the activity of superoxide dismutase (SOD)/catalase, which confirmed cytoprotection against Aβ25-35-induced oxidative damage. Moreover, CB and FE could increase Bcl-2 expression level, decrease the level of Bax and Cyt-c in Aβ25-35-treated PC12 cells. Ultimately, the neuroprotective effect of CB and FE provides a pharmacological basis for its clinical use in prevention and treatment of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI