败血症
医学
感染性休克
器官功能障碍
重症监护医学
急性呼吸窘迫综合征
细胞激素风暴
休克(循环)
内科学
心脏病学
免疫学
肺
疾病
传染病(医学专业)
2019年冠状病毒病(COVID-19)
出处
期刊:Kardiologia Polska
[Polskie Towarzystwo Kardiologiczne]
日期:2018-07-05
卷期号:76 (8): 1203-1216
被引量:29
标识
DOI:10.5603/kp.a2018.0146
摘要
Sepsis is one of the ten leading causes of death in developed and developing countries. In the United States, sepsis mortality approaches that of acute myocardial infarction and exceeds deaths from stroke. Neonates and the elderly are the most vulnerable patients, with these groups suffering from the highest sepsis mortality. In both groups, many survivors respectively display serious developmental disabilities and cognitive decline. The National Institute of Health/National Heart, Lung, and Blood Institute Panel redefined sepsis as a "severe endothelial dysfunction syndrome in response to intravascular and extravascular infections causing reversible or irreversible injury to the microcirculation responsible for multiple organ failure." Microvascular endothelial injury in sepsis due to microbial inflammation encompasses small blood vessels (< 100 μm in diameter). While the lungs remain the principal organ of interest due to sepsis-associated acute respiratory distress syndrome, "septic heart" or "septic cardiomyopathy" accelerates sepsis' transition to potentially lethal septic shock. This review analyses both new advances in understanding the septic mechanism and possible resolutions of sepsis. The concept of a "genomic storm," caused by microbes triggering florid production of inflammatory mediators, is based on septic reprogramming of the human genome. This genomic storm leads to microvascular endothelial injury, persistent hypotension, and organ failure. While very early control of sepsis-causing bacterial, fungal and viral infections remains crucial for the treatment of sepsis, supportive measures are likewise necessary to maintain blood pressure, respiration, and kidney function. New evidence indicates that preadmission b-blockers may reduce sepsis-associated mortality. The fundamental role of nuclear signalling in the progression and resolution of sepsis was established with a new class of cell-penetrating nuclear transport modifiers (NTMs). NTMs target the translocation of proinflammatory and metabolic transcription factors to the cell's nucleus while also enhancing bacterial clearance in experimental polymicrobial sepsis models. The result is a 700-fold reduction in the bacterial burden of the lungs and improvement of sepsis-associated thrombocytopaenia and blood markers of endothelial injury. When added to anti-microbial therapy, NTM has increased survival from 30% to 55%, when compared to antimicrobial therapy alone. Yet, the prevention of sepsis remains the most rational and beneficial path. Anti-pneumococcal vaccination has reduced the incidence of pneumonia and sepsis caused by increasingly antibiotic-resistant Streptococcus pneumoniae in all age groups. Similarly, the incidence of meningococcal sepsis known as "purpura fulminans" has been reduced by a recently approved vaccine thereby preventing hearing loss, neurologic damage, and limb amputations in young survivors of septic outbreaks. We urgently need further preventive, diagnostic, and therapeutic measures as the tide of sepsis rises in the United States and around the world.
科研通智能强力驱动
Strongly Powered by AbleSci AI