转染
细胞培养
增强子
HEK 293细胞
化学
基因表达
分子生物学
生物
生物化学
基因
遗传学
作者
Laura Cervera,Javier Fuenmayor,Irene González‐Domínguez,Sònia Gutiérrez-Granados,María Mercedes Segura,Francesc Gòdia
标识
DOI:10.1007/s00253-015-6842-4
摘要
The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.
科研通智能强力驱动
Strongly Powered by AbleSci AI