Gravity Aided Inertial Navigation System (GAINS)

梯度计 惯性导航系统 加速度计 重力场 大地测量学 加速度 控制理论(社会学) 矢量场 重力加速度 重力仪 物理 惯性测量装置 计算机科学 惯性参考系 地质学 人工智能 机械 经典力学 光学 磁场 控制(管理) 干涉测量 磁强计 量子力学
作者
Albert Jircitano,Daniel E. Dosch
链接
摘要

A new autonomous covert Inertial Navigation System (1X3) uniquely suited to underwater applications is described. Unlike the conventional INS, schuler and siderial errors ,are bounded without external navigation aids or active instrumentation of ground speed. As a result the system exhibits excellent long term navigation (both velocity and position) performance while maintaining the inherent covertness of an INS system. This new innovation in INS technology results by integrating a conventional INS with a gravity gradiometer capable of measuring gravity field components independently of platform accelerations. A number of integration schemes use gradiometer measurements to estimate gravity distrubance vector components which in turn are used to compensate INS accelerometer measurements. The resulting INS performance, although much improved, continue to exhibit random walk navigation errors. This new integration scheme goes further by taking advantage of navigation system velocity error observability. Velocity error is manifested in two ways. First. east velocity error results in vertical channel acceleration error through the coriolis term leading to detectable depth error. Second, gravity state estimates based mainly on gradiometer measurements are transitioned forward using estimated velocity. So errors in estimated velocity, both north and east, lead to disturbance vector solution errors and to gradient prediction errors. The vertical disturbance in turn leads to detectable depth error and gravity gradient prediction errors are observable with measured gradients. Parametric performance results are presented for GAINS, varying gyro, gravimeter, gradiometer, depth sensor quality and gravity field activity. If gravity maps are available (e.g. GEOSAT maps) GAINS can be used to implement gravity field based map matching navigation in order to further improve long term navigation performance. A significant added capability of a gradiometer based system is that these covert measurements along the vehicle track can be used to develop surrounding terrain estimates. So stealth enhancing terrain following terrain avoidance modes can be implemented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sangsang发布了新的文献求助10
1秒前
3秒前
4秒前
xue发布了新的文献求助10
5秒前
领导范儿应助广东采纳,获得10
7秒前
月亮球发布了新的文献求助10
9秒前
11秒前
NexusExplorer应助曲奇采纳,获得10
11秒前
迪儿完成签到,获得积分10
12秒前
cctv18应助花椰菜采纳,获得10
13秒前
思源应助GD采纳,获得10
13秒前
黑大帅完成签到,获得积分10
13秒前
13秒前
烟花应助LY采纳,获得10
15秒前
司空若剑发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
yangshujuan发布了新的文献求助10
19秒前
weihan1113完成签到,获得积分20
19秒前
19秒前
月亮球完成签到,获得积分20
21秒前
文艺寄灵发布了新的文献求助10
21秒前
huanhuan发布了新的文献求助10
21秒前
23秒前
25秒前
lvlei完成签到,获得积分10
28秒前
zpp完成签到,获得积分10
28秒前
Garrett完成签到 ,获得积分10
28秒前
王治豪发布了新的文献求助10
29秒前
29秒前
小安发布了新的文献求助10
30秒前
cctv18应助水的很厉害采纳,获得10
30秒前
31秒前
王敏发布了新的文献求助10
33秒前
共享精神应助王治豪采纳,获得10
34秒前
chao Liu完成签到 ,获得积分10
34秒前
星辰大海应助爱听歌幻儿采纳,获得10
35秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322285
求助须知:如何正确求助?哪些是违规求助? 2953590
关于积分的说明 8566088
捐赠科研通 2631128
什么是DOI,文献DOI怎么找? 1439660
科研通“疑难数据库(出版商)”最低求助积分说明 667171
邀请新用户注册赠送积分活动 653598