光异构化
偶氮苯
星星
材料科学
化学物理
光化学
化学
物理
异构化
聚合物
天体物理学
有机化学
复合材料
催化作用
作者
Markus Koch,Marina Saphiannikova,Olga Guskova
出处
期刊:Molecules
[MDPI AG]
日期:2021-12-18
卷期号:26 (24): 7674-7674
被引量:7
标识
DOI:10.3390/molecules26247674
摘要
This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV-Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order-disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI