亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel convolutional neural network for kidney ultrasound images segmentation

计算机科学 分割 人工智能 雅卡索引 卷积神经网络 棱锥(几何) 模式识别(心理学) 联营 超声波 编码器 计算机视觉 医学 放射科 数学 几何学 操作系统
作者
Gongping Chen,Jingjing Yin,Yu Dai,Jianxun Zhang,Xin Yin,Liang Cui
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:218: 106712-106712 被引量:20
标识
DOI:10.1016/j.cmpb.2022.106712
摘要

Ultrasound imaging has been widely used in the screening of kidney diseases. The localization and segmentation of the kidneys in ultrasound images are helpful for the clinical diagnosis of diseases. However, it is a challenging task to segment the kidney accurately from ultrasound images due to the interference of various factors.In this paper, a novel multi-scale and deep-supervised CNN architecture is proposed to segment the kidney. The architecture consists of an encoder, a pyramid pooling module and a decoder. In the encoder, we design a multi-scale input pyramid with parallel branches to capture features at different scales. In the decoder, a multi-output supervision module is developed. The introduction of the multi-output supervision module enables the network to learn to predict more precise segmentation results scale-by-scale. In addition, we construct a kidney ultrasound dataset, which contains of 400 images and 400 labels.To highlight effectiveness of the proposed approach, we use six quantitative indicators to compare with several state-of-the-art methods on the same kidney ultrasound dataset. The results of our method on the six indicators of accuracy, dice, jaccard, precision, recall and ASSD are 98.86%, 95.86%, 92.18%, 96.38%, 95.47% and 0.3510, respectively.The analysis of evaluation indicators and segmentation results shows that our method achieves the best performance in kidney ultrasound image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lanxinge完成签到 ,获得积分10
12秒前
16秒前
cornelialkx发布了新的文献求助10
23秒前
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
cornelialkx完成签到,获得积分20
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264