Quantifying the uncertainty created by non‐transferable model calibrations across climate and land cover scenarios: A case study with SWMM

土地覆盖 封面(代数) 环境科学 土地利用 环境资源管理 水文学(农业) 计算机科学
作者
Anneliese Sytsma,Octavia Crompton,Chelsea L. Panos,Sally Thompson,G. Mathias Kondolf
出处
期刊:Water Resources Research [Wiley]
标识
DOI:10.1029/2021wr031603
摘要

Predictions of urban runoff are heavily reliant on semi-distributed models, which simulate runoff at subcatchment scales. These models often use “effective” model parameters that average across the small-scale heterogeneity. Here we quantify the error in model prediction that arises when the optimal calibrated value of effective parameters changes with model forcing. The uncertainty this produces, which we refer to as “calibration parameter transfer uncertainty,” can undermine the usefulness of important applications of urban hydrologic models, for example, to predict the hydrologic response to novel climate or development scenarios. Using the urban hydrologic model SWMM (“Stormwater Management Model”) as a case study, we quantify the transferability of two calibrated effective parameters: subcatchment “width” and “connected impervious area.” Through numerical experiments, we simulate overland flow across a highly simplified synthetic urban landscape subject to a range of scenarios (combinations of storm events, soil types, and impervious areas). For each scenario, we calibrate SWMM “width” and “connected impervious area” parameters to the outcomes of a distributed model. We find that the calibrated values of these parameters vary with soil, storm, and land cover forcing. This variation across forcing parameters can result in prediction errors up to a magnitude of 60% when a calibrated SWMM is used to predict runoff following changes in climate and land cover. Such calibration transfer uncertainty is largely unaccounted for in urban hydrologic modeling. These results point to a need for additional research to determine how to use urban hydrologic models to make robust predictions across future conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zhangzhangzhang采纳,获得10
刚刚
八个冬菇完成签到,获得积分10
1秒前
苏苏发布了新的文献求助10
1秒前
afatinib完成签到,获得积分10
1秒前
小鸭子应助张雨露采纳,获得10
2秒前
shunshun完成签到,获得积分10
2秒前
小鱼爱吃肉应助张雨露采纳,获得10
2秒前
2秒前
Sure完成签到,获得积分10
3秒前
最专业发布了新的文献求助10
4秒前
4秒前
爱听歌的寄云完成签到,获得积分10
5秒前
Sure发布了新的文献求助30
6秒前
三国杀校老弟应助苏柏亚采纳,获得10
7秒前
mamin完成签到,获得积分20
7秒前
7秒前
36456657应助空洛采纳,获得10
7秒前
Chenbiao发布了新的文献求助10
8秒前
禾平发布了新的文献求助10
8秒前
搞怪哑铃发布了新的文献求助10
8秒前
慕青应助张志迪采纳,获得10
8秒前
8秒前
曲奇发布了新的文献求助10
9秒前
9秒前
英姑应助JUZI采纳,获得10
9秒前
苏苏完成签到,获得积分10
9秒前
上官若男应助鱼鱼鱼采纳,获得10
9秒前
FashionBoy应助tzzzz采纳,获得10
9秒前
霸气的保温杯完成签到,获得积分10
10秒前
科目三应助hh采纳,获得10
10秒前
俊秀的电灯胆完成签到,获得积分10
11秒前
xun发布了新的文献求助10
11秒前
HRX完成签到,获得积分10
12秒前
小鱼爱吃肉应助18480124采纳,获得10
12秒前
Ganlou应助文静的嫣娆采纳,获得10
13秒前
隐形曼青应助Linda采纳,获得10
13秒前
桐桐应助zz采纳,获得10
13秒前
随遇而安完成签到,获得积分10
13秒前
Owen应助zz采纳,获得10
13秒前
JAJ发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186