亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic scoring of postures in grouped pigs using depth image and CNN-SVM

人工智能 分割 计算机视觉 凸壳 支持向量机 数学 计算机科学 模式识别(心理学) 正多边形 几何学
作者
Jinyang Xu,Suyin Zhou,Aijun Xu,Junhua Ye,Ayong Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106746-106746 被引量:36
标识
DOI:10.1016/j.compag.2022.106746
摘要

• Used an image segmentation method (GrabCut) without capturing background images to extract target objects. • Solved the over-segmentation problem by marking the segmentation area before watershed segmentation. • CNN-SVM model was better than single CNN and SVM models for recognition of multiple postures about grouped pigs. • Realized the automatic recognition of multiple postures about grouped pigs under commercial conditions using depth image. Animal posture is a manifestation of animal behavior, and an animal’s behavior provides information about their health, welfare, and living environment. In recent years, machine vision and machine learning technologies have been widely used to detect individual or group behavior of pigs. The purpose of this study is to use machine vision and deep learning technologies to recognize and score multiple postures (standing, sitting, sternal recumbency, ventral recumbency and lateral recumbency) of pigs under commercial conditions based on depth images. In this study, the Azure Kinect DK depth camera with a top view was used to obtain the depth image of pigs, and the target pig image was obtained by GrabCut image segmentation and watershed segmentation of target object calibration. Then, based on the characteristics of the image, the convex hull, boundary, and the depth distance of the shoulder and the hip were obtained. The ratio of the convex hull perimeter to the boundary and the ratio of the convex hull area to the boundary, as well as the depth distance of the shoulder and the hip, and the depth distance ratio of the shoulder to the hip were obtained as the input of the Convolutional Neural Network-Support Vector Machine (CNN-SVM) classification model, and the model was trained and tested. In various classifier detection experiments, the performance of our pig posture classifier for standing posture and lateral recumbency posture was better, with the area under the receiver operating characteristic (AUC) values being 0.9969 and 0.9967, respectively. However, the performance of sitting posture, sternal recumbency posture and ventral recumbency posture classifier was slightly worse but still had good performance: AUC values were 0.9790, 0.9355 and 0.9795, respectively. The model in this article was used to detect the average postures of pigs in one day (taking the average for eight consecutive days), and it was found that the proportion of lying postures was higher than other postures (lying postures were 72%, standing postures were 20%, and sitting postures were 8%). The proportion of standing postures in the daytime was higher than that in the evening, and lying posture was the opposite. The proportion of the three lying postures also changes over time. This study compared the difference of posture recognition accuracy between the model in this paper (CNN-SVM), SVM and CNN; using the same training data and experimental data, the accuracy of posture recognition of the three models was 94.6368%, 92.2175% and 90.5396%, respectively. Therefore, the recognition accuracy of the model in this paper was improved greatly compared with CNN and SVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的方盒完成签到 ,获得积分10
2秒前
长青山人完成签到,获得积分10
5秒前
fuxiu完成签到,获得积分10
7秒前
PYF完成签到,获得积分10
24秒前
momo完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
33秒前
mov完成签到,获得积分0
35秒前
Marciu33发布了新的文献求助10
38秒前
mo完成签到 ,获得积分10
40秒前
heyhey发布了新的文献求助10
44秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
桐桐应助ceeray23采纳,获得20
59秒前
1分钟前
1947188918完成签到,获得积分10
1分钟前
沙脑完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助Marciu33采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
柔弱的纸鹤完成签到,获得积分10
1分钟前
旸羽完成签到,获得积分10
2分钟前
咕咕果完成签到,获得积分10
2分钟前
rose完成签到,获得积分10
2分钟前
Orange应助呆萌雨筠采纳,获得10
2分钟前
咕咕果发布了新的文献求助30
2分钟前
逮劳完成签到 ,获得积分10
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
2分钟前
光亮的绮晴完成签到 ,获得积分10
2分钟前
归雁发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
科研通AI6应助咕咕果采纳,获得10
2分钟前
英俊的铭应助Marciu33采纳,获得10
2分钟前
ririkyt完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042675
求助须知:如何正确求助?哪些是违规求助? 4273155
关于积分的说明 13322103
捐赠科研通 4086030
什么是DOI,文献DOI怎么找? 2235511
邀请新用户注册赠送积分活动 1243034
关于科研通互助平台的介绍 1170130