Automatic scoring of postures in grouped pigs using depth image and CNN-SVM

人工智能 分割 计算机视觉 凸壳 支持向量机 数学 计算机科学 模式识别(心理学) 正多边形 几何学
作者
Jinyang Xu,Suyin Zhou,Aijun Xu,Junhua Ye,Ayong Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106746-106746 被引量:29
标识
DOI:10.1016/j.compag.2022.106746
摘要

• Used an image segmentation method (GrabCut) without capturing background images to extract target objects. • Solved the over-segmentation problem by marking the segmentation area before watershed segmentation. • CNN-SVM model was better than single CNN and SVM models for recognition of multiple postures about grouped pigs. • Realized the automatic recognition of multiple postures about grouped pigs under commercial conditions using depth image. Animal posture is a manifestation of animal behavior, and an animal’s behavior provides information about their health, welfare, and living environment. In recent years, machine vision and machine learning technologies have been widely used to detect individual or group behavior of pigs. The purpose of this study is to use machine vision and deep learning technologies to recognize and score multiple postures (standing, sitting, sternal recumbency, ventral recumbency and lateral recumbency) of pigs under commercial conditions based on depth images. In this study, the Azure Kinect DK depth camera with a top view was used to obtain the depth image of pigs, and the target pig image was obtained by GrabCut image segmentation and watershed segmentation of target object calibration. Then, based on the characteristics of the image, the convex hull, boundary, and the depth distance of the shoulder and the hip were obtained. The ratio of the convex hull perimeter to the boundary and the ratio of the convex hull area to the boundary, as well as the depth distance of the shoulder and the hip, and the depth distance ratio of the shoulder to the hip were obtained as the input of the Convolutional Neural Network-Support Vector Machine (CNN-SVM) classification model, and the model was trained and tested. In various classifier detection experiments, the performance of our pig posture classifier for standing posture and lateral recumbency posture was better, with the area under the receiver operating characteristic (AUC) values being 0.9969 and 0.9967, respectively. However, the performance of sitting posture, sternal recumbency posture and ventral recumbency posture classifier was slightly worse but still had good performance: AUC values were 0.9790, 0.9355 and 0.9795, respectively. The model in this article was used to detect the average postures of pigs in one day (taking the average for eight consecutive days), and it was found that the proportion of lying postures was higher than other postures (lying postures were 72%, standing postures were 20%, and sitting postures were 8%). The proportion of standing postures in the daytime was higher than that in the evening, and lying posture was the opposite. The proportion of the three lying postures also changes over time. This study compared the difference of posture recognition accuracy between the model in this paper (CNN-SVM), SVM and CNN; using the same training data and experimental data, the accuracy of posture recognition of the three models was 94.6368%, 92.2175% and 90.5396%, respectively. Therefore, the recognition accuracy of the model in this paper was improved greatly compared with CNN and SVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助闫俊采纳,获得10
1秒前
1秒前
2333发布了新的文献求助10
2秒前
yiyi发布了新的文献求助10
2秒前
maxxie1017发布了新的文献求助10
2秒前
二宝完成签到,获得积分10
2秒前
3秒前
清爽的晓啸完成签到,获得积分10
3秒前
3秒前
墨痕发布了新的文献求助10
4秒前
马騳骉发布了新的文献求助30
4秒前
归尘发布了新的文献求助50
5秒前
Hui发布了新的文献求助10
6秒前
7秒前
7秒前
yxy完成签到,获得积分10
7秒前
头发很多发布了新的文献求助10
7秒前
yuanjingnan发布了新的文献求助10
8秒前
8秒前
笨笨沛文完成签到,获得积分10
8秒前
8秒前
牛马人生完成签到,获得积分10
8秒前
WWW完成签到,获得积分10
9秒前
Jason完成签到,获得积分10
9秒前
9秒前
9秒前
兴奋大船发布了新的文献求助10
10秒前
bingbing完成签到,获得积分20
10秒前
吨吨喝水发布了新的文献求助10
10秒前
白也完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
时尚俊驰发布了新的文献求助10
12秒前
Ava应助2333采纳,获得10
12秒前
yuanjingnan完成签到,获得积分10
13秒前
jialiu完成签到,获得积分10
13秒前
14秒前
停婷发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653