Importance of Mass Transport in High Energy Density Lithium‐Sulfur Batteries Under Lean Electrolyte Conditions

电解质 分离器(采油) 阴极 能量密度 硫黄 材料科学 多孔性 化学工程 锂(药物) 大规模运输 环境科学 无机化学 化学 电极 复合材料 工程物理 冶金 工程类 热力学 物理化学 内分泌学 物理 医学
作者
Shanglin Li,Shota Ishikawa,Jiali Liu,Kazuhide Ueno,Kaoru Dokko,Gen Inoue,Masayoshi Watanabe
出处
期刊:Batteries & supercaps [Wiley]
卷期号:5 (5) 被引量:4
标识
DOI:10.1002/batt.202100409
摘要

Abstract The operation of a lithium‐sulfur (Li−S) battery under lean electrolyte conditions is essential for enhancing the energy density to a practical level. It is rather challenging to reduce the amount of electrolyte in Li−S cells because the discharge reactions of sulfur (Li 2 S x formation: x =8−1) occur via a fully dissolution/precipitation conversion mechanism in conventional electrolyte solutions. Therefore, the use of sparingly solvating electrolytes has been reported as an effective method to reduce the electrolyte content in Li−S cells. However, the majority of related research to date has been based on the use of an excess amount of electrolyte and low S loading. In this study, we investigated the performance of Li−S cells using cathodes with a relatively high S loading (>4 mg cm −2 ) under lean electrolyte conditions of sparingly solvating electrolytes. The products of inhomogeneous discharge reactions occurring at the separator side in the Li−S cell cathodes blocked the void spaces of the cathode, and the porosity of the cathode decreased due to the expansion of the active material. In addition, the ion pathway toward the interior parts of the electrode (close to the current collector) was hindered, and further discharge reactions were inhibited. The inhomogeneous discharge reactions could be alleviated by enhancing the transport properties of the electrolyte and adequately maintaining the porous structure of the cathode by incorporating an additive in it. The effects of these changes on the Li−S cell performance were also further confirmed by numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助顺利毕业采纳,获得10
1秒前
领导范儿应助spray采纳,获得30
1秒前
1秒前
长风完成签到,获得积分10
2秒前
3秒前
吴岳发布了新的文献求助10
3秒前
科研通AI2S应助我是125采纳,获得10
4秒前
涛涛完成签到,获得积分10
4秒前
轩辕德地发布了新的文献求助10
5秒前
科研通AI2S应助jidou1011采纳,获得10
5秒前
魔幻的妖丽完成签到 ,获得积分10
6秒前
黄晓杰2024完成签到,获得积分10
7秒前
枫叶完成签到,获得积分10
8秒前
8秒前
9秒前
小二郎应助虚心盼晴采纳,获得10
9秒前
俊逸的盛男完成签到 ,获得积分10
9秒前
11秒前
脑洞疼应助枫叶采纳,获得10
12秒前
12秒前
Gyrate完成签到,获得积分10
13秒前
李李发布了新的文献求助50
13秒前
dashi完成签到 ,获得积分10
13秒前
无花果应助一天八杯水采纳,获得10
13秒前
13秒前
SS发布了新的文献求助10
14秒前
顺顺发布了新的文献求助10
15秒前
15秒前
15秒前
www发布了新的文献求助10
15秒前
16秒前
16秒前
李繁蕊发布了新的文献求助10
17秒前
暴躁的嘉懿完成签到,获得积分10
17秒前
LZH发布了新的文献求助20
17秒前
领导范儿应助rosexu采纳,获得10
18秒前
华生完成签到,获得积分10
19秒前
19秒前
Miracle关注了科研通微信公众号
19秒前
通~发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808