Plasmon-Induced Photocatalysis Based on Pt–Au Coupling with Enhanced Oxidation Abilities

光催化 等离子体子 双金属片 氧化还原 催化作用 表面等离子共振 纳米颗粒 材料科学 可见光谱 半导体 表面等离子体子 偶联反应 光化学 光电子学 化学 纳米技术 生物化学 冶金
作者
Yukika Aoki,Takuya Ishida,Tetsu Tatsuma
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (3): 4406-4412 被引量:4
标识
DOI:10.1021/acsanm.2c00509
摘要

Pt has been used as a cocatalyst for semiconductor photocatalysis because of its high catalytic activity. Although Pt catalysts are highly active for both oxidation and reduction reactions, photocatalysts have exploited the activity of Pt almost exclusively for reduction reactions. In the case of Au nanoparticles combined with a semiconductor, oxidation reactions take place at the Au surface due to plasmon-induced charge separation (PICS). If Au nanoparticles are replaced with Pt nanoparticles, oxidation reactions may occur at the Pt surface. However, Pt is much less plasmonic in comparison with Au, in the visible wavelength range. In order to make Pt nanoparticles resonant with visible light, here we coupled small Pt nanospheres (PtNSs) with large Au nanocubes (AuNCs) electromagnetically on TiO2, so that a coupling resonance mode arose at ∼600 nm. The bimetallic coupling allowed the PtNS and the AuNC to serve as a charge separation and catalytic reaction unit and a light-harvesting antenna unit, respectively. Light collected by the AuNC is transferred to the PtNS, where hot electron–hole pairs are generated. The electrons are injected into TiO2, and the holes drive the oxidation reactions at the Pt surface. We performed oxidation of water at the PtNSs. As a result of coupling, the external quantum efficiency of PICS was enhanced by a factor of 28 because of the amplified interparticle electric field and intensified light absorption in the PtNS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuo完成签到,获得积分10
刚刚
科目三应助莫默采纳,获得10
1秒前
Jeamren完成签到,获得积分10
1秒前
YANDD完成签到,获得积分10
1秒前
内向以彤完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
lili应助Vicky采纳,获得30
3秒前
3秒前
李健应助念汐采纳,获得10
3秒前
坚定迎天完成签到,获得积分10
3秒前
3秒前
内向以彤发布了新的文献求助10
4秒前
bkagyin应助wangxiaoer采纳,获得10
4秒前
wwwww123发布了新的文献求助30
4秒前
科研通AI6应助li采纳,获得10
5秒前
Silence完成签到,获得积分10
5秒前
你真是那个啊完成签到,获得积分10
5秒前
科目三应助含蓄芷波采纳,获得10
5秒前
hino发布了新的文献求助10
5秒前
Simms发布了新的文献求助10
5秒前
6秒前
友人Y发布了新的文献求助10
6秒前
初识发布了新的文献求助10
6秒前
FLZLC发布了新的文献求助10
6秒前
7秒前
huoluosi发布了新的文献求助10
7秒前
刻苦丝袜发布了新的文献求助10
7秒前
7秒前
wkjfh举报会撒娇的高山求助涉嫌违规
7秒前
忆仙姿完成签到,获得积分10
8秒前
8秒前
笨笨的太清完成签到,获得积分10
8秒前
8秒前
cwj发布了新的文献求助10
9秒前
Lucas应助潇洒雁风采纳,获得10
9秒前
9秒前
lllxxx完成签到,获得积分10
9秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401