Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments

人工智能 计算机科学 深度学习 跟踪(教育) 鉴定(生物学) 心理学 生态学 生物 教育学
作者
Markus Marks,Jin Qiuhan,Oliver Sturman,Lukas von Ziegler,Sepp Kollmorgen,Wolfger von der Behrens,Valerio Mante,Johannes Bohacek,Mehmet Fatih Yanik
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (4): 331-340 被引量:65
标识
DOI:10.1038/s42256-022-00477-5
摘要

Quantification of behaviours of interest from video data is commonly used to study brain function, the effects of pharmacological interventions, and genetic alterations. Existing approaches lack the capability to analyse the behaviour of groups of animals in complex environments. We present a novel deep learning architecture for classifying individual and social animal behaviour—even in complex environments directly from raw video frames—that requires no intervention after initial human supervision. Our behavioural classifier is embedded in a pipeline (SIPEC) that performs segmentation, identification, pose-estimation and classification of complex behaviour, outperforming the state of the art. SIPEC successfully recognizes multiple behaviours of freely moving individual mice as well as socially interacting non-human primates in three dimensions, using data only from simple mono-vision cameras in home-cage set-ups. The use of deep neural networks for the automated analysis of behavioural videos has emerged as a tool in neuroscience, medicine and psychology. Marks and colleagues present a pipeline capable of tracking and identifying animals, as well as classifying individual and interacting animal behaviour in video recordings and even in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
腿腿完成签到,获得积分10
1秒前
orixero应助科研小白采纳,获得10
1秒前
子桑发布了新的文献求助10
1秒前
2秒前
qianyiwen发布了新的文献求助10
3秒前
3秒前
伈X发布了新的文献求助10
3秒前
3秒前
视野胤发布了新的文献求助10
4秒前
李健的小迷弟应助思思采纳,获得10
4秒前
4秒前
逃跑的炸鸡完成签到 ,获得积分10
4秒前
5秒前
搜集达人应助俞凡白采纳,获得10
5秒前
儒雅的雪曼完成签到,获得积分10
6秒前
安安发布了新的文献求助10
6秒前
111发布了新的文献求助10
7秒前
8秒前
8秒前
Asteria发布了新的文献求助10
8秒前
wxy关闭了wxy文献求助
9秒前
冷艳元柏完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
小白完成签到,获得积分10
12秒前
12秒前
牧海冬发布了新的文献求助10
12秒前
思源应助kk采纳,获得10
13秒前
13秒前
李健的粉丝团团长应助Wuxg采纳,获得10
13秒前
15秒前
15秒前
小白发布了新的文献求助10
15秒前
15秒前
尹冰露发布了新的文献求助10
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230