Dual Encoder-Based Dynamic-Channel Graph Convolutional Network With Edge Enhancement for Retinal Vessel Segmentation

计算机科学 分割 编码器 人工智能 图像分割 深度学习 模式识别(心理学) 计算机视觉 频道(广播) 卷积神经网络 计算机网络 操作系统
作者
Yang Li,Yue Zhang,Weigang Cui,Baiying Lei,Xihe Kuang,Teng Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 1975-1989 被引量:80
标识
DOI:10.1109/tmi.2022.3151666
摘要

Retinal vessel segmentation with deep learning technology is a crucial auxiliary method for clinicians to diagnose fundus diseases. However, the deep learning approaches inevitably lose the edge information, which contains spatial features of vessels while performing down-sampling, leading to the limited segmentation performance of fine blood vessels. Furthermore, the existing methods ignore the dynamic topological correlations among feature maps in the deep learning framework, resulting in the inefficient capture of the channel characterization. To address these limitations, we propose a novel dual encoder-based dynamic-channel graph convolutional network with edge enhancement (DE-DCGCN-EE) for retinal vessel segmentation. Specifically, we first design an edge detection-based dual encoder to preserve the edge of vessels in down-sampling. Secondly, we investigate a dynamic-channel graph convolutional network to map the image channels to the topological space and synthesize the features of each channel on the topological map, which solves the limitation of insufficient channel information utilization. Finally, we study an edge enhancement block, aiming to fuse the edge and spatial features in the dual encoder, which is beneficial to improve the accuracy of fine blood vessel segmentation. Competitive experimental results on five retinal image datasets validate the efficacy of the proposed DE-DCGCN-EE, which achieves more remarkable segmentation results against the other state-of-the-art methods, indicating its potential clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onecerise发布了新的文献求助10
1秒前
adds发布了新的文献求助10
2秒前
林星应助科研通管家采纳,获得20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
Ava应助风登楼采纳,获得10
5秒前
小二郎应助Cassie采纳,获得10
6秒前
nenoaowu发布了新的文献求助10
6秒前
Yukiiiii完成签到,获得积分10
7秒前
7秒前
8秒前
adds完成签到,获得积分20
9秒前
JamesPei应助淡然的元容采纳,获得10
11秒前
隐形曼青应助糖果采纳,获得10
11秒前
12秒前
Yiphy发布了新的文献求助50
12秒前
zero桥完成签到,获得积分10
14秒前
充电宝应助Ste采纳,获得10
15秒前
15秒前
17秒前
18秒前
WH发布了新的文献求助10
19秒前
背后瑾瑜发布了新的文献求助10
20秒前
22秒前
852应助不发一区不改名采纳,获得10
22秒前
23秒前
23秒前
唯有发布了新的文献求助10
23秒前
CY完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706