Robust Multi-view Clustering with Incomplete Information.

计算机科学 聚类分析 假阳性和假阴性 假阳性悖论 完备性(序理论) 数据挖掘 一致性(知识库) 完整信息 人工智能 噪音(视频) 任务(项目管理) 机器学习 算法
作者
Mouxing Yang,Yunfan Li,Peng Hu,Jinfeng Bai,Jian Cheng Lv,Xi Peng
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP 被引量:2
标识
DOI:10.1109/tpami.2022.3155499
摘要

The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP). To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies on the noisy correspondence problem (\textit{i.e.}, the false negatives) which is a novel paradigm of noisy labels. Extensive experiments demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Elaine完成签到,获得积分10
刚刚
h41692011完成签到 ,获得积分10
刚刚
斯文败类应助圆圆采纳,获得30
1秒前
李健的小迷弟应助7777777采纳,获得10
1秒前
涛浪驳回了田様应助
1秒前
1秒前
1秒前
2秒前
2秒前
个木发布了新的文献求助10
2秒前
上官若男应助SY采纳,获得10
3秒前
不易BY完成签到,获得积分10
3秒前
ee关闭了ee文献求助
3秒前
Ysh完成签到,获得积分20
3秒前
拼搏念蕾完成签到 ,获得积分10
3秒前
一页完成签到,获得积分10
4秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
4秒前
科研通AI2S应助VDC采纳,获得10
4秒前
wwt发布了新的文献求助10
4秒前
务实大船完成签到,获得积分10
5秒前
蜗牛撵大象完成签到,获得积分10
5秒前
6秒前
sun发布了新的文献求助10
6秒前
6秒前
二二二发布了新的文献求助10
7秒前
开心的傲安完成签到,获得积分20
7秒前
麻麻完成签到,获得积分20
7秒前
DDTT完成签到,获得积分10
8秒前
霸气的念云完成签到,获得积分10
8秒前
Orange应助欢呼小蚂蚁采纳,获得10
8秒前
8秒前
SQ完成签到,获得积分10
9秒前
9秒前
飞跃海龙完成签到 ,获得积分10
9秒前
ufuon发布了新的文献求助10
10秒前
momo完成签到,获得积分10
11秒前
赘婿应助二二二采纳,获得10
11秒前
JamesPei应助HongJiang采纳,获得10
11秒前
clarkq完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678