Robust Multi-view Clustering with Incomplete Information.

计算机科学 聚类分析 假阳性和假阴性 假阳性悖论 完备性(序理论) 数据挖掘 一致性(知识库) 完整信息 人工智能 噪音(视频) 任务(项目管理) 机器学习 算法
作者
Mouxing Yang,Yunfan Li,Peng Hu,Jinfeng Bai,Jian Cheng Lv,Xi Peng
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP 被引量:2
标识
DOI:10.1109/tpami.2022.3155499
摘要

The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP). To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies on the noisy correspondence problem (\textit{i.e.}, the false negatives) which is a novel paradigm of noisy labels. Extensive experiments demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovt123发布了新的文献求助30
1秒前
1秒前
1秒前
韩丙宇发布了新的文献求助10
1秒前
2秒前
阿玉完成签到 ,获得积分10
3秒前
Airy完成签到,获得积分10
4秒前
WWW发布了新的文献求助10
4秒前
4秒前
Delight完成签到 ,获得积分10
5秒前
Dellamoffy发布了新的文献求助10
5秒前
5秒前
cxy发布了新的文献求助10
5秒前
南知完成签到,获得积分10
5秒前
6秒前
Lucky小M完成签到,获得积分10
7秒前
笨笨的凡梅完成签到 ,获得积分10
7秒前
顾长生发布了新的文献求助10
7秒前
runtang完成签到,获得积分10
8秒前
Zoe发布了新的文献求助30
11秒前
天才没昵称关注了科研通微信公众号
11秒前
xyj6486完成签到,获得积分10
12秒前
丘比特应助XL采纳,获得10
13秒前
隐形曼青应助下雨了吗采纳,获得10
13秒前
13秒前
调研昵称发布了新的文献求助10
16秒前
chenyunxia应助张宝采纳,获得10
17秒前
17秒前
HS完成签到 ,获得积分10
18秒前
20秒前
21秒前
所所应助顾长生采纳,获得10
22秒前
李健的小迷弟应助天才采纳,获得30
23秒前
天才没昵称完成签到,获得积分10
26秒前
Owen应助沈嘀嘀采纳,获得10
26秒前
xiaotianli完成签到,获得积分10
27秒前
28秒前
Jasper应助alhn采纳,获得10
28秒前
随机子应助阿良采纳,获得10
28秒前
圈圈完成签到,获得积分10
29秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415