Application of machine learning methods in photovoltaic output power prediction: A review

光伏系统 人工神经网络 机器学习 计算机科学 支持向量机 可再生能源 功率(物理) 人工智能 预测建模 发电 工程类 电气工程 物理 量子力学
作者
Wenyong Zhang,Qingwei Li,Qifeng He
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:14 (2) 被引量:23
标识
DOI:10.1063/5.0082629
摘要

As the proportion of photovoltaic (PV) power generation rapidly increases, accurate PV output power prediction becomes more crucial to energy efficiency and renewable energy production. There are numerous approaches for PV output power prediction. Many researchers have previously summarized PV output power prediction from different angles. However, there are relatively few studies that use machine learning methods as a means to conduct a separate review of PV output power prediction. This review classifies machine learning methods from different perspectives and provides a systematic and critical review of machine learning methods for recent PV output power applications in terms of the temporal and spatial scales of prediction and finds that the artificial neural network and support vector machine are used much more frequently than other methods. In addition, this study examines the differences between the output power prediction of individual PV plants and regional PV stations and the benefits of regional PV plant prediction, while this paper presents some performance evaluation matrices commonly used for PV output power prediction. In addition, to further improve the accuracy of machine learning methods for PV output power prediction, some researchers suggest preprocessing the input data of the prediction models or considering hybrid machine learning methods. Furthermore, the potential advantages of machine model optimization for prediction performance improvement are discussed and explored in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助MM采纳,获得10
1秒前
所所应助臧晓蕾采纳,获得10
3秒前
南兮发布了新的文献求助10
3秒前
foxp3发布了新的文献求助10
3秒前
天天快乐应助zxy采纳,获得10
3秒前
rr完成签到,获得积分10
6秒前
ding应助TT001采纳,获得10
7秒前
8秒前
项彼夜完成签到,获得积分10
8秒前
开心香岚发布了新的文献求助10
8秒前
Jerry完成签到,获得积分10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
yier应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
喽喽完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
foxp3完成签到,获得积分10
14秒前
走过的风发布了新的文献求助10
15秒前
开心香岚完成签到,获得积分10
15秒前
臧晓蕾发布了新的文献求助10
17秒前
爱听歌的夏烟完成签到,获得积分10
17秒前
时尚的冰棍儿完成签到 ,获得积分0
18秒前
喽喽发布了新的文献求助30
18秒前
张小小发布了新的文献求助10
20秒前
果果应助高胜寒采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430