Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models

计算机科学 人工智能 对比度(视觉) 分割 背景(考古学) 神经影像学 图像质量 磁共振成像 深度学习 医学影像学 模式识别(心理学) 数据挖掘 图像(数学) 放射科 医学 古生物学 材料科学 精神科 冶金 生物
作者
Bacarella Simona,Elina Thibeau–Sutre,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2608565
摘要

Clinical data warehouses provide access to massive amounts of medical images and thus offer unprecedented opportunities for research. However, they also pose important challenges, a major challenge being their heterogeneity. In particular, they contain patients with numerous different diseases. The exploration of some neurological diseases with magnetic resonance imaging (MRI) requires injecting a gadolinium-based contrast agent (for instance to detect tumors or other contrast-enhancing lesions) while other diseases do not require such injection. Image harmonization is a key factor to enable unbiased differential diagnosis in such context. Additionally, classical neuroimaging software tools that extract features used as inputs of classification algorithms are typically applied only to images without gadolinium. The objective of this work is to homogenize images from a clinical data warehouse and enable the extraction of consistent features from brain MR images, no matter the initial presence or absence of gadolinium. We propose a deep learning approach based on a 3D U-Net to translate contrast-enhanced into non-contrast-enhanced T1-weighted brain MRI. The approach was trained/validated using 230 image pairs and tested on 26 image pairs of good quality and 51 image pairs of low quality from the data warehouse of the hospitals of the Greater Paris area (Assistance Publique-Hˆopitaux de Paris [AP-HP]). We tested two different 3D U-Net architectures and we chose the one reaching the best image similarity metrics for a further validation for a segmentation task. We tested two 3D U-Net architectures with the addition either of residual connections or of attention mechanisms. The U-Net with attention mechanisms reached the best image similarity metrics and was further validated on a segmentation task. We showed that features extracted from the synthetic images (gray matter, white matter and cerebrospinal fluid volumes) were closer to those obtained from the non-contrast-enhanced T1-weighted brain MRI (considered as reference) than the original, contrast-enhanced, images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李伟完成签到,获得积分10
1秒前
1秒前
Owen应助Chris采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
LinglongCai完成签到 ,获得积分10
3秒前
顾矜应助liu采纳,获得10
3秒前
李爱国应助xujy采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
昌昌昌发布了新的文献求助10
6秒前
qaw发布了新的文献求助10
7秒前
rybooker关注了科研通微信公众号
7秒前
8秒前
紫荆发布了新的文献求助10
8秒前
花开hhhhhhh发布了新的文献求助10
9秒前
科研通AI5应助霸气的金鱼采纳,获得10
9秒前
小能饼干发布了新的文献求助10
9秒前
领导范儿应助李子采纳,获得10
9秒前
蓁66发布了新的文献求助10
12秒前
12秒前
12秒前
昌昌昌完成签到,获得积分10
15秒前
嗯嗯完成签到,获得积分20
16秒前
16秒前
归尘发布了新的文献求助100
16秒前
好好学习天天向上完成签到 ,获得积分10
17秒前
充电宝应助小能饼干采纳,获得10
17秒前
amy发布了新的文献求助10
17秒前
fufufu123发布了新的文献求助10
17秒前
kmzzy完成签到 ,获得积分10
18秒前
科研通AI5应助1680Y采纳,获得10
18秒前
gzj完成签到,获得积分10
19秒前
斯文败类应助李白的白123采纳,获得10
20秒前
panpanliumin完成签到,获得积分0
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031