透明质酸
化学
药物输送
泡沫电池
巨噬细胞
靶向给药
炎症
活性氧
生物物理学
渗透(战争)
体内
细胞生物学
体外
免疫学
生物化学
生物
解剖
生物技术
有机化学
工程类
运筹学
作者
Jianhua He,Wenli Zhang,Xiaoju Zhou,Fengfei Xu,Jiahui Zou,Qiqi Zhang,Yi Zhao,Hongliang He,Hu Yang,Jianping Liu
标识
DOI:10.1016/j.bioactmat.2022.03.041
摘要
Nanoparticle-based therapeutics represent potential strategies for treating atherosclerosis; however, the complex plaque microenvironment poses a barrier for nanoparticles to target the dysfunctional cells. Here, we report reactive oxygen species (ROS)-responsive and size-reducible nanoassemblies, formed by multivalent host-guest interactions between β-cyclodextrins (β-CD)-anchored discoidal recombinant high-density lipoprotein (NP3ST) and hyaluronic acid-ferrocene (HA-Fc) conjugates. The HA-Fc/NP3ST nanoassemblies have extended blood circulation time, specifically accumulate in atherosclerotic plaque mediated by the HA receptors CD44 highly expressed in injured endothelium, rapidly disassemble in response to excess ROS in the intimal and release smaller NP3ST, allowing for further plaque penetration, macrophage-targeted cholesterol efflux and drug delivery. In vivo pharmacodynamicses in atherosclerotic mice shows that HA-Fc/NP3ST reduces plaque size by 53%, plaque lipid deposition by 63%, plaque macrophage content by 62% and local inflammatory factor level by 64% compared to the saline group. Meanwhile, HA-Fc/NP3ST alleviates systemic inflammation characterized by reduced serum inflammatory factor levels. Collectively, HA-Fc/NP3ST nanoassemblies with ROS-responsive and size-reducible properties exhibit a deeper penetration in atherosclerotic plaque and enhanced macrophage targeting ability, thus exerting effective cholesterol efflux and drug delivery for atherosclerosis therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI