Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangwang2168完成签到,获得积分10
刚刚
wenbo发布了新的文献求助10
1秒前
1秒前
欣喜灵波发布了新的文献求助10
1秒前
酷酷的听筠完成签到,获得积分20
1秒前
可爱的函函应助楼谷秋采纳,获得10
1秒前
银鱼在游完成签到,获得积分10
2秒前
坚定晓兰应助qwerty采纳,获得10
2秒前
iwersonshmtu发布了新的文献求助10
2秒前
litchi完成签到,获得积分10
2秒前
北宋豆浆给北宋豆浆的求助进行了留言
3秒前
今后应助疯狂的海亦采纳,获得10
3秒前
科研通AI2S应助非言墨语采纳,获得10
4秒前
4秒前
4秒前
FashionBoy应助无聊的凝莲采纳,获得10
4秒前
kmoonkkk发布了新的文献求助10
5秒前
好看的花花鱼完成签到 ,获得积分10
5秒前
5秒前
xtxt完成签到,获得积分10
5秒前
科研人完成签到,获得积分10
6秒前
小柚子完成签到,获得积分10
6秒前
Lucas完成签到,获得积分10
6秒前
Meyako应助奔波儿灞采纳,获得20
6秒前
HK完成签到,获得积分10
7秒前
idealist0315完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
大模型应助jiaxuan采纳,获得10
7秒前
feikun完成签到,获得积分10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
故酒应助科研通管家采纳,获得10
7秒前
8秒前
yznfly应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
貔貅完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060