Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我讨厌文献综述完成签到 ,获得积分10
刚刚
Ava应助禾几采纳,获得10
刚刚
2秒前
害怕的忆梅完成签到,获得积分10
2秒前
高大的曼寒完成签到,获得积分10
3秒前
4秒前
7秒前
JamesPei应助GQ采纳,获得10
7秒前
小满完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
11秒前
12秒前
zx598376321完成签到,获得积分10
14秒前
zhaoyue完成签到 ,获得积分10
17秒前
17秒前
萧瑟处完成签到,获得积分10
17秒前
星宿陨完成签到 ,获得积分10
18秒前
Duomo完成签到 ,获得积分10
18秒前
李健的小迷弟应助三木采纳,获得10
18秒前
扶光完成签到,获得积分10
22秒前
26秒前
希望天下0贩的0应助ch采纳,获得10
27秒前
28秒前
浮游应助科研通管家采纳,获得10
30秒前
寻道图强应助科研通管家采纳,获得100
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
wanci应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
30秒前
沉静凝荷发布了新的文献求助10
32秒前
yatou327发布了新的文献求助10
32秒前
34秒前
34秒前
高调的摆酒人完成签到,获得积分10
36秒前
37秒前
38秒前
38秒前
GQ发布了新的文献求助10
40秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678