清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daixan89完成签到 ,获得积分10
2秒前
jh完成签到 ,获得积分10
21秒前
1分钟前
科研科研发布了新的文献求助10
1分钟前
无花果应助VDC采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
小白t73完成签到 ,获得积分10
1分钟前
1分钟前
VDC发布了新的文献求助10
1分钟前
海边的曼彻斯特完成签到 ,获得积分10
2分钟前
Spring完成签到,获得积分10
2分钟前
专注的觅云完成签到 ,获得积分10
2分钟前
走啊走应助张wx_100采纳,获得10
2分钟前
2分钟前
科研科研发布了新的文献求助10
2分钟前
徐团伟完成签到 ,获得积分10
2分钟前
3分钟前
wjwqz发布了新的文献求助10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
jrzsy完成签到,获得积分10
3分钟前
3分钟前
催化剂发布了新的文献求助10
3分钟前
科研科研完成签到,获得积分10
3分钟前
科研科研发布了新的文献求助10
4分钟前
wjwqz完成签到,获得积分10
5分钟前
名侦探柯基完成签到 ,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
superLmy完成签到 ,获得积分10
5分钟前
止戈为武完成签到,获得积分10
5分钟前
5分钟前
科研科研发布了新的文献求助10
5分钟前
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
5分钟前
唐泽雪穗发布了新的文献求助10
5分钟前
6分钟前
唐泽雪穗完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
晴莹完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957990
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133332
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116677