Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AOI0504完成签到,获得积分10
1秒前
王一博完成签到,获得积分10
1秒前
打打应助柚屿采纳,获得10
1秒前
小马甲应助smy采纳,获得10
1秒前
英俊的铭应助抗体小王采纳,获得10
2秒前
夜星沉发布了新的文献求助10
2秒前
木木夕完成签到,获得积分10
2秒前
小二郎应助你们采纳,获得10
3秒前
薛冰雪发布了新的文献求助10
3秒前
英俊的铭应助橙子采纳,获得10
4秒前
大方元风完成签到,获得积分10
4秒前
5秒前
所所应助Xx采纳,获得10
5秒前
刘小文完成签到 ,获得积分10
5秒前
张耘硕发布了新的文献求助10
5秒前
马小发布了新的文献求助10
6秒前
Qiuju完成签到,获得积分10
6秒前
ran完成签到,获得积分10
7秒前
Fsy应助wmq采纳,获得10
8秒前
璐璐完成签到,获得积分10
8秒前
9秒前
无敌大好人完成签到,获得积分10
9秒前
10秒前
摸余一直爽完成签到,获得积分10
10秒前
10秒前
搜集达人应助阿谭采纳,获得10
10秒前
10秒前
自信向梦发布了新的文献求助10
11秒前
11秒前
yonglong完成签到,获得积分10
12秒前
12秒前
鹤轸完成签到,获得积分10
12秒前
12秒前
xinl518发布了新的文献求助10
13秒前
典雅访旋完成签到,获得积分10
14秒前
15秒前
在水一方应助张耘硕采纳,获得10
15秒前
rym0404发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272536
求助须知:如何正确求助?哪些是违规求助? 4429759
关于积分的说明 13789897
捐赠科研通 4308272
什么是DOI,文献DOI怎么找? 2364084
邀请新用户注册赠送积分活动 1359709
关于科研通互助平台的介绍 1322750