Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
turbo发布了新的文献求助10
1秒前
前隆是狗完成签到,获得积分10
1秒前
tiantian完成签到,获得积分10
2秒前
2秒前
邓丹怡发布了新的文献求助10
3秒前
4秒前
petli发布了新的文献求助20
4秒前
柚子完成签到 ,获得积分10
4秒前
cherry发布了新的文献求助10
5秒前
洛洛完成签到,获得积分20
5秒前
5秒前
5秒前
今后应助孤独靖柏采纳,获得10
5秒前
搜集达人应助魔幻高烽采纳,获得10
6秒前
6秒前
ZHa0发布了新的文献求助10
6秒前
252525发布了新的文献求助10
6秒前
7秒前
蓝璃发布了新的文献求助10
7秒前
8秒前
mola完成签到,获得积分10
8秒前
领导范儿应助韦映菡采纳,获得10
8秒前
zwh完成签到 ,获得积分10
9秒前
ok发布了新的文献求助10
9秒前
shuang0116发布了新的文献求助10
9秒前
9秒前
vuuu发布了新的文献求助10
10秒前
fff发布了新的文献求助10
10秒前
11秒前
mola发布了新的文献求助10
11秒前
11秒前
邓丹怡完成签到,获得积分10
12秒前
何求发布了新的文献求助10
13秒前
顾矜应助Theone采纳,获得10
13秒前
西罗完成签到,获得积分10
14秒前
14秒前
科目三应助熊蕾采纳,获得10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541