Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助次次采纳,获得10
1秒前
bhyz完成签到,获得积分10
1秒前
顾矜应助豌豆采纳,获得10
1秒前
南木发布了新的文献求助10
1秒前
husker完成签到,获得积分10
2秒前
深情安青应助乘风破浪采纳,获得10
2秒前
QIUJIEYANG发布了新的文献求助10
2秒前
emmaguo713发布了新的文献求助10
2秒前
3秒前
ZWK发布了新的文献求助10
4秒前
忧心的半芹完成签到 ,获得积分10
4秒前
4秒前
CodeCraft应助Qing采纳,获得10
4秒前
7秒前
梦雨甘完成签到,获得积分10
7秒前
7秒前
乐乐应助KScrazy采纳,获得10
7秒前
7秒前
菠萝吹雪发布了新的文献求助10
8秒前
8秒前
Laity完成签到,获得积分10
8秒前
Yan发布了新的文献求助10
8秒前
9秒前
Phy完成签到,获得积分10
9秒前
emmaguo713完成签到,获得积分10
9秒前
9秒前
君还完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
高先春完成签到,获得积分20
11秒前
冷傲的尔白关注了科研通微信公众号
11秒前
南木完成签到,获得积分10
12秒前
朴素的绿柳完成签到,获得积分10
12秒前
岁岁平安完成签到 ,获得积分10
12秒前
梦雨甘发布了新的文献求助10
12秒前
小学生1005发布了新的文献求助10
13秒前
13秒前
乘风破浪发布了新的文献求助10
13秒前
Liu发布了新的文献求助50
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092