Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助结实的红酒采纳,获得10
2秒前
学术小透明完成签到,获得积分10
2秒前
潇洒代亦完成签到,获得积分10
2秒前
guandada完成签到,获得积分10
3秒前
领导范儿应助sdfer23采纳,获得10
3秒前
小小发布了新的文献求助10
4秒前
乐乐应助风清扬采纳,获得10
4秒前
寒冷凌瑶发布了新的文献求助10
4秒前
爆米花应助陶逸豪采纳,获得10
5秒前
ho应助xczhu采纳,获得10
6秒前
林深完成签到,获得积分10
7秒前
星辰大海应助weilao采纳,获得10
7秒前
傲娇芷容发布了新的文献求助10
7秒前
8秒前
王腾锐发布了新的文献求助10
9秒前
9秒前
9秒前
Wenyilong发布了新的文献求助10
10秒前
斯文败类应助Xangel采纳,获得10
11秒前
Cecilia_koala完成签到,获得积分10
11秒前
12秒前
王十三完成签到,获得积分10
12秒前
13秒前
13秒前
Tracy完成签到,获得积分10
14秒前
英姑应助jiqihao采纳,获得10
15秒前
15秒前
怕孤独的白竹完成签到,获得积分10
16秒前
Frank完成签到,获得积分10
16秒前
16秒前
18秒前
二九十二发布了新的文献求助10
18秒前
江觅松发布了新的文献求助30
18秒前
Jessica发布了新的文献求助10
20秒前
choiiianh发布了新的文献求助10
20秒前
FashionBoy应助wop111采纳,获得10
20秒前
LuoYR@SZU完成签到,获得积分10
20秒前
kk发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354986
求助须知:如何正确求助?哪些是违规求助? 4486944
关于积分的说明 13968439
捐赠科研通 4387716
什么是DOI,文献DOI怎么找? 2410452
邀请新用户注册赠送积分活动 1402979
关于科研通互助平台的介绍 1376705