已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint

搅拌摩擦焊 材料科学 焊接 铝合金 接头(建筑物) 万能试验机 铆钉 转速 极限抗拉强度 复合材料 机械工程 结构工程 工程类
作者
Renangi Sandeep,N. Arivazhagan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9003-9011 被引量:11
标识
DOI:10.1177/09544062221090082
摘要

Vehicle weight has been a critical concern in the aerospace and automobile industries for decades. Integrating dissimilar aluminium and polymer hybrid structures is beneficial for weight reduction without affecting structural performance. In the present work, aluminium alloy 7475 and polyphenylene sulfide (PPS) sheets were joined using the friction stir welding (FSW) technology in lap joint configuration. A series of FSW experiments have been performed by the design matrix developed using response surface methodology. Tensile lap shear strength (TLS) is calculated for each experimental run. In this study, an attempt has been made to assess the potential of machine learning algorithms to predict the TLS of the joint. It was found that the support vector machine (SVM) model with RBF kernel was the most effective for predicting the TLS. Furthermore, FSW process parameters are optimized by means of the desirability approach. The optimal set to attain maximum TLS is identified as the tilt angle of 2°, welding speed of 5.12 mm/min and tool rotational speed of 1185.92 r/min. Finally, a confirmation test was performed to validate the optimal set and the adequacy of the developed SVM model. From the confirmation test, the error percentage between experimental and prediction values is less than 5%. Metallographic analysis revealed that the joining mechanism is the macro and micromechanical interlocking assisted by chemical bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人间富贵花完成签到 ,获得积分10
1秒前
执着尔云完成签到,获得积分10
1秒前
CipherSage应助不能随便采纳,获得10
2秒前
obito发布了新的文献求助10
3秒前
宇宙第一帅完成签到 ,获得积分10
8秒前
长情无心完成签到,获得积分10
16秒前
万能图书馆应助1234采纳,获得10
16秒前
月夕完成签到 ,获得积分10
18秒前
20秒前
20秒前
23秒前
24秒前
min完成签到 ,获得积分10
25秒前
27秒前
小马甲应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
今夜有雨完成签到 ,获得积分10
28秒前
小池同学发布了新的文献求助10
28秒前
深情安青应助柚子采纳,获得10
30秒前
不能随便发布了新的文献求助10
31秒前
长情白柏发布了新的文献求助10
31秒前
32秒前
33秒前
34秒前
66小鼠发布了新的文献求助10
38秒前
38秒前
1234发布了新的文献求助10
39秒前
39秒前
还不回家发布了新的文献求助10
41秒前
诺颜爱完成签到,获得积分10
41秒前
无花果应助老实天菱采纳,获得10
43秒前
46秒前
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027