材料科学
快离子导体
正交晶系
等结构
离子电导率
锂(药物)
三元运算
电化学
电解质
离子键合
相(物质)
电导率
电化学窗口
卤化物
无机化学
结晶学
物理化学
晶体结构
离子
电极
化学
内分泌学
有机化学
医学
程序设计语言
计算机科学
作者
Jianwen Liang,Eveline van der Maas,Jing Luo,Xiaona Li,Ning Chen,Keegan R. Adair,Weihan Li,Junjie Li,Yongfeng Hu,Jue Liu,Li Zhang,Shangqian Zhao,Shigang Lu,Jiantao Wang,Huan Huang,Wen-Xuan Zhao,Steven R. Parnell,Ronald I. Smith,Swapna Ganapathy,Marnix Wagemaker,Xueliang Sun
标识
DOI:10.1002/aenm.202103921
摘要
Abstract Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li 3‐3 x M 1+ x Cl 6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z ‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li 2.73 Ho 1.09 Cl 6 /In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI