量子点
材料科学
兴奋剂
电化学
多巴胺
光电子学
纳米技术
化学
电极
物理化学
生物
神经科学
作者
Qiang Bai,Hongyang Luo,Xuetao Yi,Shugao Shi,Lina Wang,Manhong Liu,Fanglin Du,Zhugen Yang,Ning Sui
标识
DOI:10.1016/j.microc.2022.107521
摘要
Nitrogen-doped graphdiyne dots (N-GDQDs) are firstly synthesized by hydrothermal method. The prepared N-GDQDs are used for constructing a dual-mode optical-electrochemical nanosensor for sensitive and selective detection of dopamine (DA). • Graphdiyne quantum dots (N-GDQDs) are successfully prepared by hydrothermal method. • The doping N greatly improves the quantum yield, electron transport ability and conductivity of N-GDQDs. • N-GDQDs are used for constructing a dual-mode (optical-electrochemical) nanosensor for dopamine detection. Graphdiyne quantum dots (GDQDs) have attracted increasing attentions due to its unique electronic, optical, and electrochemical properties. However, the low conductivity and quantum yield of GDQDs limit their application. Here, nitrogen-doped graphdiyne dots (N-GDQDs) are firstly synthesized by a simple, friendly and one-step hydrothermal method. The N-GDQDs show a maximum emission at 410 nm under the excitation wavelength of 319 nm. The doping N modifies the surface defect of N-GDQDs and further greatly improves their quantum yield (from 14.6% to 48.6%). In addition, the doping N induces a strong electron transport ability and good conductivity of N-GDQDs. Subsequently, the prepared N-GDQDs are used for constructing an optical-electrochemical nanosensor for sensitive and selective detection of dopamine (DA). DA can quench the fluorescence of N-GDQDs by forming a ground-state non-fluorescent complex between phenoxy anions (in PBS solution) in DA and pyridinic N sites of N-GDQDs, which leads to a highly sensitive and selective detection of DA with a limit of detection (LOD) of 0.14 μM and a linear range of 0.32–500 μM. In the electrochemical detection, DA can be oxidized to DA-quinone under the electric field through N-GDQDs/GCE, which shows a big affinity to N-GDQDs. The LOD for DA is 0.02 μM with a linear range of 0.05–240 μM. Finally, the spiked application for DA detection in human serum samples is investigated, the results show that the method has high accuracy. Our work provides a new carbon quantum dots based sensing platform, which shows great potential in practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI