Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107430-107430 被引量:45
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘111发布了新的文献求助10
1秒前
寇博翔发布了新的文献求助10
4秒前
dm发布了新的文献求助10
5秒前
5秒前
5秒前
无极微光应助若花若草采纳,获得20
6秒前
6秒前
爆米花应助周一采纳,获得10
9秒前
ys1111xiao完成签到 ,获得积分10
9秒前
景严完成签到,获得积分10
9秒前
yinjs158发布了新的文献求助10
10秒前
10秒前
幽默孤兰发布了新的文献求助10
10秒前
2哇哇哇发布了新的文献求助10
10秒前
YTT发布了新的文献求助10
11秒前
moritzlaw完成签到,获得积分20
12秒前
汉堡包应助roro熊采纳,获得10
13秒前
科研小趴菜完成签到 ,获得积分10
14秒前
14秒前
野原x之助完成签到,获得积分10
15秒前
malo发布了新的文献求助10
15秒前
吴若雨完成签到 ,获得积分10
16秒前
daisyyy完成签到,获得积分10
19秒前
隐形静芙完成签到 ,获得积分10
19秒前
lh961129发布了新的文献求助10
19秒前
20秒前
21秒前
狂野的筝完成签到 ,获得积分10
21秒前
21秒前
jason发布了新的文献求助10
22秒前
简单小土豆完成签到 ,获得积分10
24秒前
张鑫发布了新的文献求助10
25秒前
26秒前
27秒前
malo完成签到,获得积分10
27秒前
解语花发布了新的文献求助10
27秒前
27秒前
顾矜应助陈秋采纳,获得10
28秒前
roro熊发布了新的文献求助10
30秒前
livian完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281