Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:178: 107430-107430 被引量:43
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WYS发布了新的文献求助10
1秒前
清爽伯云应助无奈的道天采纳,获得10
1秒前
putong完成签到,获得积分10
1秒前
echo完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
Jasper应助Brain采纳,获得10
2秒前
jianrobsim发布了新的文献求助10
3秒前
研友_赖冰凡完成签到,获得积分10
3秒前
一期一会发布了新的文献求助10
3秒前
3秒前
ARES昔年完成签到,获得积分10
3秒前
4秒前
5秒前
杨老师发布了新的文献求助10
5秒前
小巧的越泽完成签到,获得积分10
5秒前
5秒前
6秒前
Wwww发布了新的文献求助10
8秒前
8秒前
8秒前
Pan发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
zanie完成签到,获得积分10
9秒前
jasmine完成签到 ,获得积分10
10秒前
小苑完成签到,获得积分10
10秒前
鲸落发布了新的文献求助10
10秒前
机灵的醉山完成签到,获得积分10
10秒前
安静代萱完成签到 ,获得积分10
11秒前
11秒前
11秒前
清爽伯云应助卜钊采纳,获得10
12秒前
black发布了新的文献求助10
13秒前
无心的浩轩完成签到,获得积分10
13秒前
852应助zanie采纳,获得10
13秒前
海波完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917