Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107430-107430 被引量:38
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白小白发布了新的文献求助10
1秒前
thchiang发布了新的文献求助30
1秒前
Crsip关注了科研通微信公众号
1秒前
乐乐应助camellia采纳,获得10
2秒前
小二郎应助无情的白桃采纳,获得10
2秒前
2秒前
研友_Zb1rln完成签到,获得积分10
4秒前
健身boy完成签到,获得积分10
4秒前
盛京烟雨行完成签到 ,获得积分10
4秒前
4秒前
心灵美的大山完成签到,获得积分10
4秒前
4秒前
yuan发布了新的文献求助10
5秒前
诚心八宝粥完成签到,获得积分10
5秒前
6秒前
艺术家完成签到 ,获得积分10
7秒前
7秒前
7秒前
DreamMaker完成签到 ,获得积分10
7秒前
自由完成签到 ,获得积分10
7秒前
请勿继续发布了新的文献求助10
7秒前
聪明宛菡完成签到 ,获得积分10
8秒前
搜集达人应助木子采纳,获得10
9秒前
英姑应助伊丽莎白打工采纳,获得10
9秒前
10秒前
李浓发布了新的文献求助10
10秒前
长情绿凝完成签到,获得积分10
10秒前
10秒前
10秒前
FashionBoy应助科研废物采纳,获得10
11秒前
Ava应助zzznznnn采纳,获得10
11秒前
2799完成签到,获得积分10
11秒前
家家完成签到 ,获得积分10
12秒前
小牛同志完成签到,获得积分10
12秒前
12秒前
12秒前
西瓜霜完成签到 ,获得积分10
12秒前
深情安青应助aaaaa采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759