Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107430-107430 被引量:45
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清脆平安完成签到 ,获得积分20
1秒前
所所应助Parsifal采纳,获得30
1秒前
1秒前
整齐外套关注了科研通微信公众号
2秒前
2秒前
慈祥的丹寒完成签到 ,获得积分10
3秒前
3秒前
曲沛萍发布了新的文献求助10
4秒前
4秒前
道中道发布了新的文献求助10
4秒前
伶俐德天发布了新的文献求助20
4秒前
wackykao发布了新的文献求助10
5秒前
Lucas应助VDV采纳,获得10
5秒前
靓丽安珊发布了新的文献求助10
5秒前
hjq发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
fu发布了新的文献求助10
6秒前
FashionBoy应助鸵鸟采纳,获得10
6秒前
7秒前
alier完成签到,获得积分10
7秒前
快乐若翠完成签到,获得积分10
7秒前
华杰发布了新的文献求助10
7秒前
7秒前
昊儿虫完成签到 ,获得积分10
7秒前
7秒前
7秒前
教生物的杨教授给教生物的杨教授的求助进行了留言
8秒前
飞小骆驼完成签到,获得积分10
8秒前
路过地球完成签到 ,获得积分10
8秒前
阿美完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
gs发布了新的文献求助10
10秒前
10秒前
研友_841zXL完成签到,获得积分0
10秒前
童宝完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668