Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics

化学计量学 傅里叶变换红外光谱 线性判别分析 偏最小二乘回归 数学 衰减全反射 收获时间 傅里叶变换 生物系统 模式识别(心理学) 环境科学 计算机科学 化学 人工智能 园艺 生物 统计 色谱法 光学 物理 数学分析
作者
Lian Li,Yanli Zhao,Zhimin Li,Yuanzhong Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107430-107430 被引量:45
标识
DOI:10.1016/j.microc.2022.107430
摘要

• A fast method of ATR-FTIR had superiority than FT-NIR to discriminate the D. officinale . • The separate effect of different parts is better than harvest times with exploratory analysis. • 2240 2DCOS images were collected and identified different parts and harvest time. • The relationship between DMA in different parts and harvest times was investigated. Dendrobium officinale Kimura et Migo, plays an important role in foods, medicinal and health products and its leaves have a high-quality value for raw industrial material. Different parts and harvest time are the main factors causing to differences for its accumulation of active ingredients. This study attempts to evaluate and identify different parts and harvests time of D. officinale multi-platform information combined with chemometrics as a practical strategy. From all the results: (1) Compared with Fourier transform-near infrared spectroscopy (FT-NIR), the models of partial least squares discriminant analysis and support vector machine had absolute advantages to discriminate this plant based on ATR-FTIR; (2) The results of exploratory analysis showed that the samples were gathered well according to different categories, and the recognition effect of different parts is better than that of different harvest time; (3) The synchronous two-dimensional correlation spectrum based on ATR-FTIR can well identify different parts; (4) Compared with the original spectral data, all models were superiority based on Savitzky-Golay, which is more suitable to identify for different parts of D. officinale ; (5) The investigation resulted that the best harvest time is from November this year to January next year for stems. The characteristics of this method is a fast, nondestructive, and green method with widely applicability that can not only solve the problem of identification and lay the foundation for further research of medicinal and edible homologous plants, but also provides a theoretical basis for the harvesting time and quality evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻雨筠发布了新的文献求助10
刚刚
1秒前
1秒前
耶耶耶发布了新的文献求助10
1秒前
1秒前
十二月花开完成签到 ,获得积分10
2秒前
2秒前
Lin发布了新的文献求助20
3秒前
Richard发布了新的文献求助10
3秒前
爹爹完成签到,获得积分10
4秒前
demon发布了新的文献求助10
4秒前
雨梦迟歌发布了新的文献求助10
5秒前
fev123完成签到,获得积分0
6秒前
jelle关注了科研通微信公众号
6秒前
xww发布了新的文献求助10
6秒前
小缪完成签到,获得积分10
6秒前
斯文海菡完成签到,获得积分10
7秒前
言寺完成签到,获得积分20
7秒前
田様应助HOLLOW采纳,获得30
7秒前
年轻涔雨发布了新的文献求助30
7秒前
黑马王子发布了新的文献求助10
7秒前
丘比特应助迷人的叫兽采纳,获得10
8秒前
yanwei发布了新的文献求助10
8秒前
852应助airchinaadmin采纳,获得30
8秒前
田様应助小徐采纳,获得10
8秒前
8秒前
8秒前
爆米花应助U哈哈采纳,获得10
9秒前
9秒前
虚幻雨筠完成签到,获得积分10
9秒前
王德俊完成签到,获得积分10
9秒前
10秒前
就好完成签到 ,获得积分10
11秒前
打打应助YingQin采纳,获得10
11秒前
Rui完成签到,获得积分10
11秒前
NexusExplorer应助爱丽丝敏采纳,获得10
12秒前
CodeCraft应助疯狂的寻绿采纳,获得10
12秒前
JamesPei应助Richard采纳,获得10
13秒前
香蕉觅云应助隐形的若灵采纳,获得20
13秒前
三三发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249