Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence

自适应神经模糊推理系统 蒸散量 均方误差 归一化差异植被指数 环境科学 分水岭 植被(病理学) 数学 统计 叶面积指数 水文学(农业) 遥感 模糊逻辑 计算机科学 机器学习 生态学 人工智能 模糊控制系统 地理 工程类 病理 岩土工程 生物 医学
作者
Fatemeh Hadadi,Roozbeh Moazenzadeh,Babak Mohammadi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:609: 127774-127774 被引量:38
标识
DOI:10.1016/j.jhydrol.2022.127774
摘要

Actual evapotranspiration (AET) is one of the decisive factors controlling the water balance at the catchment level, particularly in arid and semi-arid regions, but measured data for which are generally unavailable. In this study, performance of a base artificial intelligence (AI) model, adaptive neuro-fuzzy inference system (ANFIS), and its hybrids with two bio-inspired optimization algorithms, namely shuffled frog leaping algorithm (SFLA) and grey wolf optimization (GWO), in estimating monthly AET was evaluated over 2001–2010 across Neishaboor watershed in Iran. The inputs of these models were categorized into three groups including meteorological, remotely sensed, and hybrid-based predictors, and defined in the form of 8 different scenarios. Net radiation (Rn), land surface temperature (LST), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and soil wetness deficit index (SWDI) were the remotely sensed predictors, computed using MODIS satellite images on the monthly scale for the study area. The results showed that the SWDI predictor has played a significant role in improving the accuracy of AET estimation, with the highest error reduction (12.5, 17 and 26.5% for ANFIS, ANFIS-SFLA, and ANFIS-GWO, respectively) obtained under scenarios including SWDI compared to corresponding scenarios excluding this predictor. In testing set, the three aforementioned models exhibited their best performance under Scenario 8 (RMSE = 11.93, NSE = 0.69, RRMSE = 0.37), Scenario 4 (RMSE = 11.06, NSE = 0.74, RRMSE = 0.37) and Scenario 4 (RMSE = 10.9, NSE = 0.76, RRMSE = 0.36), respectively. Coupling the SFLA and GWO optimization algorithms to the base model improved the accuracy of AET estimation, with the maximum error reduction for the two algorithms being about 12% (Scenarios 2 and 4) and 14% (Scenario 4), respectively. Examining the performance of the best scenarios of the three models in three intervals including the first, middle, and last third of measured AET values showed that all models were the most accurate in the first third interval. The results also indicated that all models have had higher accuracies in the first and middle third intervals of under-estimation set and the last interval of over-estimation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助怕黑的擎采纳,获得10
刚刚
爆米花应助zhaoxiao采纳,获得10
刚刚
Henry应助深情未来采纳,获得200
刚刚
皮本皮发布了新的文献求助10
1秒前
大饼卷肉完成签到,获得积分10
2秒前
2秒前
寒江雪应助lanyiyi采纳,获得10
3秒前
3秒前
4秒前
小二郎应助霍小美采纳,获得10
4秒前
5秒前
健壮安柏完成签到 ,获得积分10
5秒前
英姑应助霜降采纳,获得10
5秒前
7秒前
香蕉寒梅发布了新的文献求助10
8秒前
冷酷的听兰完成签到,获得积分20
11秒前
好多斤完成签到,获得积分20
11秒前
kk关注了科研通微信公众号
12秒前
怕黑的擎发布了新的文献求助10
12秒前
麻瓜小禾子完成签到,获得积分10
12秒前
善学以致用应助祁丶采纳,获得10
12秒前
13秒前
13秒前
14秒前
右旋王小二完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
共享精神应助冷酷的听兰采纳,获得10
16秒前
李-完成签到,获得积分10
16秒前
zhaoxiao发布了新的文献求助10
16秒前
赘婿应助小王采纳,获得10
17秒前
萧暖发布了新的文献求助10
17秒前
伶俐绿海完成签到 ,获得积分10
17秒前
18秒前
大傻子发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265050
求助须知:如何正确求助?哪些是违规求助? 2904965
关于积分的说明 8332289
捐赠科研通 2575415
什么是DOI,文献DOI怎么找? 1399750
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633361