Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence

自适应神经模糊推理系统 蒸散量 均方误差 归一化差异植被指数 环境科学 分水岭 植被(病理学) 数学 统计 叶面积指数 水文学(农业) 遥感 模糊逻辑 计算机科学 机器学习 生态学 人工智能 模糊控制系统 地理 工程类 生物 医学 岩土工程 病理
作者
Fatemeh Hadadi,Roozbeh Moazenzadeh,Babak Mohammadi
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:609: 127774-127774 被引量:38
标识
DOI:10.1016/j.jhydrol.2022.127774
摘要

Actual evapotranspiration (AET) is one of the decisive factors controlling the water balance at the catchment level, particularly in arid and semi-arid regions, but measured data for which are generally unavailable. In this study, performance of a base artificial intelligence (AI) model, adaptive neuro-fuzzy inference system (ANFIS), and its hybrids with two bio-inspired optimization algorithms, namely shuffled frog leaping algorithm (SFLA) and grey wolf optimization (GWO), in estimating monthly AET was evaluated over 2001–2010 across Neishaboor watershed in Iran. The inputs of these models were categorized into three groups including meteorological, remotely sensed, and hybrid-based predictors, and defined in the form of 8 different scenarios. Net radiation (Rn), land surface temperature (LST), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and soil wetness deficit index (SWDI) were the remotely sensed predictors, computed using MODIS satellite images on the monthly scale for the study area. The results showed that the SWDI predictor has played a significant role in improving the accuracy of AET estimation, with the highest error reduction (12.5, 17 and 26.5% for ANFIS, ANFIS-SFLA, and ANFIS-GWO, respectively) obtained under scenarios including SWDI compared to corresponding scenarios excluding this predictor. In testing set, the three aforementioned models exhibited their best performance under Scenario 8 (RMSE = 11.93, NSE = 0.69, RRMSE = 0.37), Scenario 4 (RMSE = 11.06, NSE = 0.74, RRMSE = 0.37) and Scenario 4 (RMSE = 10.9, NSE = 0.76, RRMSE = 0.36), respectively. Coupling the SFLA and GWO optimization algorithms to the base model improved the accuracy of AET estimation, with the maximum error reduction for the two algorithms being about 12% (Scenarios 2 and 4) and 14% (Scenario 4), respectively. Examining the performance of the best scenarios of the three models in three intervals including the first, middle, and last third of measured AET values showed that all models were the most accurate in the first third interval. The results also indicated that all models have had higher accuracies in the first and middle third intervals of under-estimation set and the last interval of over-estimation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
小盘子完成签到,获得积分10
5秒前
李繁蕊完成签到,获得积分10
5秒前
5秒前
酷波er应助mashichuang采纳,获得10
5秒前
color发布了新的文献求助10
6秒前
6秒前
Helio发布了新的文献求助10
6秒前
6秒前
顺心若魔发布了新的文献求助10
7秒前
8秒前
CLN完成签到,获得积分10
9秒前
小王姐姐完成签到,获得积分10
9秒前
harri发布了新的文献求助30
9秒前
森敷完成签到 ,获得积分10
10秒前
缥缈的寻琴应助Atlantic采纳,获得10
11秒前
11秒前
11秒前
Gary完成签到,获得积分10
12秒前
14秒前
初芷伊完成签到,获得积分10
15秒前
15秒前
16秒前
火星上青筠完成签到,获得积分10
16秒前
17秒前
勤奋的下水道工人完成签到,获得积分10
17秒前
samtol完成签到,获得积分10
17秒前
18秒前
机智念芹发布了新的文献求助10
18秒前
18秒前
19秒前
wanci应助慕容迎松采纳,获得10
20秒前
20秒前
ccx完成签到,获得积分10
20秒前
harri完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007