积分器
离散化
克莱恩-戈登方程
非线性系统
数学
对称(几何)
方案(数学)
指数函数
空格(标点符号)
应用数学
数学分析
几何学
计算机科学
计算机网络
带宽(计算)
操作系统
物理
量子力学
摘要
In this work, we propose a symmetric exponential-type low- regularity integrator for solving the nonlinear Klein-Gordon equation under rough data. The scheme is explicit in the physical space, and it is efficient under the Fourier pseudospectral discretization. Moreover, it achieves the second-order accuracy in time without loss of regularity of the solution, and its time-reversal symmetry ensures the good long-time behavior. Error estimates are done for both semi- and full discretizations. Numerical results confirm the theoretical results, and comparisons illustrate the improvement of the proposed scheme over the existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI