Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助361采纳,获得10
刚刚
1秒前
gogoyoco发布了新的文献求助10
1秒前
sssssnake发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
激情的代曼完成签到,获得积分10
3秒前
西哥发布了新的文献求助10
3秒前
3秒前
浮游应助zihaolee采纳,获得10
3秒前
4秒前
5秒前
上官若男应助美满向薇采纳,获得10
6秒前
6秒前
6秒前
7秒前
高兴的幻竹完成签到,获得积分10
7秒前
魏冉完成签到,获得积分10
7秒前
8秒前
铱铂发布了新的文献求助10
8秒前
宫阙发布了新的文献求助10
8秒前
在水一方应助yangmi采纳,获得10
8秒前
齐甲雯发布了新的文献求助30
8秒前
粥粥发布了新的文献求助10
9秒前
vetXue完成签到,获得积分10
9秒前
诸葛藏藏完成签到,获得积分10
9秒前
鱼鱼鱼发布了新的文献求助10
9秒前
深情安青应助drleslie采纳,获得30
10秒前
坐忘道完成签到 ,获得积分10
10秒前
10秒前
菜菜发布了新的文献求助20
10秒前
zxzxzz发布了新的文献求助10
11秒前
Li完成签到,获得积分10
12秒前
12秒前
俏皮的芝麻完成签到,获得积分10
13秒前
领导范儿应助LL采纳,获得10
13秒前
浮游应助powerfuled采纳,获得10
14秒前
丘比特应助supin采纳,获得10
14秒前
小二郎应助铱铂采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884869
求助须知:如何正确求助?哪些是违规求助? 4169926
关于积分的说明 12939631
捐赠科研通 3930555
什么是DOI,文献DOI怎么找? 2156644
邀请新用户注册赠送积分活动 1175079
关于科研通互助平台的介绍 1079700