Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁ning完成签到,获得积分10
刚刚
sss发布了新的文献求助10
刚刚
Singularity应助无情白羊采纳,获得10
2秒前
平常的玲发布了新的文献求助30
2秒前
2秒前
臻灏发布了新的文献求助10
3秒前
星移完成签到,获得积分10
3秒前
hyl发布了新的文献求助10
4秒前
4秒前
ziwei发布了新的文献求助10
5秒前
Hello应助炼丹采纳,获得10
7秒前
djiwisksk66应助西瓜二郎采纳,获得10
7秒前
任性踏歌应助Yao采纳,获得10
8秒前
NexusExplorer应助小脚丫采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
英俊的铭应助hyl采纳,获得10
11秒前
Orange应助臻灏采纳,获得10
11秒前
科目三应助fighting采纳,获得10
12秒前
平常的玲完成签到,获得积分20
12秒前
ailsa发布了新的文献求助10
13秒前
kai_完成签到,获得积分10
13秒前
xxx完成签到,获得积分10
14秒前
潇洒发布了新的文献求助10
14秒前
CodeCraft应助夕荀采纳,获得10
18秒前
丘比特应助yemeiyu采纳,获得10
19秒前
路过你的夏完成签到,获得积分10
19秒前
19秒前
orixero应助小蚊子采纳,获得10
20秒前
热心市民小红花给swy212的求助进行了留言
21秒前
24秒前
evil完成签到,获得积分20
24秒前
一期一完成签到,获得积分10
25秒前
夕荀发布了新的文献求助10
29秒前
SciGPT应助White.K采纳,获得10
29秒前
onestepcloser完成签到 ,获得积分10
29秒前
可靠的冰烟完成签到,获得积分10
30秒前
灯灯发布了新的文献求助20
31秒前
bkagyin应助Eden采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303