Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxm完成签到,获得积分20
刚刚
猪儿虫儿完成签到 ,获得积分10
1秒前
粗心的画板完成签到,获得积分10
2秒前
rebubu发布了新的文献求助10
2秒前
builda完成签到,获得积分20
3秒前
3秒前
3秒前
顺顺尼发布了新的文献求助10
4秒前
4秒前
lxm发布了新的文献求助10
4秒前
4秒前
5秒前
数学真的好难完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
hahahah完成签到,获得积分20
6秒前
栾花花发布了新的文献求助10
6秒前
一只特立独行的朱完成签到,获得积分10
6秒前
8秒前
8秒前
啦啦啦啦发布了新的文献求助10
9秒前
嘉悦发布了新的文献求助30
9秒前
浮游应助积极如天采纳,获得10
9秒前
9秒前
钟钟完成签到,获得积分10
9秒前
筑城院完成签到,获得积分10
9秒前
sapioe关注了科研通微信公众号
11秒前
builda发布了新的文献求助10
11秒前
12秒前
所所应助栾花花采纳,获得10
12秒前
Deannn778发布了新的文献求助10
13秒前
科研通AI6应助西米采纳,获得10
14秒前
14秒前
关于我发布了新的文献求助10
14秒前
zhuboujs发布了新的文献求助10
14秒前
17秒前
ZZH发布了新的文献求助10
17秒前
17秒前
漂亮的凛完成签到,获得积分10
18秒前
天天快乐应助7890733采纳,获得10
18秒前
卡冈图雅完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566