Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Reese发布了新的文献求助10
刚刚
刚刚
小郑顺利毕业完成签到,获得积分10
刚刚
lin完成签到,获得积分20
刚刚
1秒前
AAA完成签到,获得积分10
2秒前
阿佳发布了新的文献求助10
3秒前
科研通AI6应助changewoo采纳,获得10
3秒前
华仔应助大海采纳,获得10
5秒前
skywalker完成签到,获得积分10
5秒前
5秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助hulahula采纳,获得10
7秒前
爆米花应助勤恳怀梦采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助helo采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
怕黑犀牛应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
大力信封应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
北沐完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Stella应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057