Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快帮我找找完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
zz发布了新的文献求助10
4秒前
Owen应助我要吃蛋挞采纳,获得10
4秒前
yangyu完成签到,获得积分10
4秒前
一郭红烧肉完成签到,获得积分20
4秒前
永不停歇奈格里完成签到,获得积分10
4秒前
科研通AI6应助宇与鱼采纳,获得10
5秒前
香蕉觅云应助SS采纳,获得10
5秒前
zzzz发布了新的文献求助10
5秒前
5秒前
chixueqi发布了新的文献求助10
6秒前
Xu完成签到,获得积分10
7秒前
8秒前
8秒前
充电宝应助Desperado采纳,获得10
9秒前
英俊的铭应助zhouzhou采纳,获得10
9秒前
卖萌的秋田完成签到,获得积分10
9秒前
科研通AI5应助刘赟采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
0806发布了新的文献求助10
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
蠩讉鷴完成签到 ,获得积分10
10秒前
栗子应助科研通管家采纳,获得10
11秒前
2千儿完成签到 ,获得积分10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907