PerFED-GAN: Personalized Federated Learning via Generative Adversarial Networks

计算机科学 生成语法 人工智能 对抗制 生成对抗网络 深度学习
作者
Xingjian Cao,Gang Sun,Hongfang Yu,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 3749-3762 被引量:50
标识
DOI:10.1109/jiot.2022.3172114
摘要

Federated learning is gaining popularity as a distributed machine learning method that can be used to deploy AI-dependent Internet of Things applications while protecting client data privacy and security. Due to the differences of clients, a single global model may not perform well on all clients, so the personalized federated learning method, which trains a personalized model for each client that better suits its individual needs, becomes a research hotspot. Most personalized federated learning research, however, focuses on data heterogeneity while ignoring the need for model architecture heterogeneity. Most existing federated learning methods uniformly set the model architecture of all clients participating in federated learning, which is inconvenient for each client's individual model and local data distribution requirements, and also increases the risk of client model leakage. This article proposes a federated learning method based on co-training and generative adversarial networks (GANs) that allows each client to design its own model to participate in federated learning training independently without sharing any model architecture or parameter information with other clients or a center. In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大雨筠应助WHH采纳,获得30
1秒前
sys完成签到,获得积分10
2秒前
李嘉琪发布了新的文献求助10
3秒前
Akim应助感动的冬云采纳,获得10
3秒前
4秒前
fcf335gj应助JuliaZ采纳,获得10
6秒前
7秒前
SciGPT应助白白采纳,获得10
7秒前
端庄洪纲完成签到 ,获得积分10
7秒前
积极诗霜完成签到,获得积分10
8秒前
丘比特应助qwer采纳,获得30
9秒前
青子发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
斯文败类应助科研通管家采纳,获得10
11秒前
个性的紫菜应助科研通管家采纳,获得200
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
wisdom应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
ysea发布了新的文献求助30
13秒前
小二郎应助耶耶耶采纳,获得10
14秒前
南华知识分子完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
wallonce发布了新的文献求助10
15秒前
15秒前
15秒前
KGYM完成签到,获得积分10
16秒前
附子完成签到,获得积分10
16秒前
共享精神应助LiaoPiggg采纳,获得10
16秒前
zgx发布了新的文献求助10
17秒前
19秒前
cjj完成签到,获得积分10
19秒前
碧蓝可乐完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483