Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI

判别式 计算机科学 人工智能 深度学习 正规化(语言学) 卷积神经网络 子网 痴呆 子网 模式识别(心理学) 特征学习 前驱期 机器学习 特征(语言学) 疾病 医学 病理 哲学 语言学 计算机安全 计算机网络
作者
Kangfu Han,Man He,Feng Yang,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085002-085002 被引量:13
标识
DOI:10.1088/1361-6560/ac5ed5
摘要

Capitalizing on structural magnetic resonance imaging (sMRI), existing deep learning methods (especially convolutional neural networks, CNNs) have been widely and successfully applied to computer-aided diagnosis of Alzheimer's disease (AD) and its prodromal stage (i.e. mild cognitive impairment, MCI). But considering the generalization capability of the obtained model trained on limited number of samples, we construct a multi-task multi-level feature adversarial network (M2FAN) for joint diagnosis and atrophy localization using baseline sMRI. Specifically, the linear-aligned T1 MR images were first processed by a lightweight CNN backbone to capture the shared intermediate feature representations, which were then branched into a global subnet for preliminary dementia diagnosis and a multi instance learning network for brain atrophy localization in multi-task learning manner. As the global discriminative information captured by the global subnet might be unstable for disease diagnosis, we further designed a module of multi-level feature adversarial learning that accounts for regularization to make global features robust against the adversarial perturbation synthesized by the local/instance features to improve the diagnostic performance. Our proposed method was evaluated on three public datasets (i.e. ADNI-1, ADNI-2, and AIBL), demonstrating competitive performance compared with several state-of-the-art methods in both tasks of AD diagnosis and MCI conversion prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净灭男完成签到,获得积分10
刚刚
所所应助太叔夜南采纳,获得10
1秒前
1秒前
Peyton Why完成签到,获得积分10
2秒前
ajhs完成签到,获得积分20
3秒前
3秒前
尽快毕业发布了新的文献求助10
3秒前
桐桐应助swed采纳,获得10
3秒前
4秒前
貔貅发布了新的文献求助10
4秒前
4秒前
ajhs发布了新的文献求助30
6秒前
6秒前
7秒前
wjy321发布了新的文献求助10
8秒前
9秒前
酷炫小熊猫完成签到,获得积分20
9秒前
悟123完成签到 ,获得积分10
10秒前
坦率灵槐发布了新的文献求助10
10秒前
Destiny完成签到,获得积分10
11秒前
12秒前
太叔夜南发布了新的文献求助10
14秒前
14秒前
HSA完成签到,获得积分10
14秒前
沐熙完成签到 ,获得积分10
14秒前
十里关注了科研通微信公众号
15秒前
研友_LaNOdn发布了新的文献求助10
16秒前
double完成签到 ,获得积分10
16秒前
飞快的孱完成签到,获得积分10
17秒前
是我不得开心妍完成签到 ,获得积分10
18秒前
隐形曼青应助星沉静默采纳,获得10
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
yyzhou应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
gyf应助科研通管家采纳,获得30
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937