亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI

判别式 计算机科学 人工智能 深度学习 正规化(语言学) 卷积神经网络 子网 痴呆 子网 模式识别(心理学) 特征学习 前驱期 机器学习 特征(语言学) 疾病 医学 病理 哲学 语言学 计算机安全 计算机网络
作者
Kangfu Han,Man He,Feng Yang,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085002-085002 被引量:13
标识
DOI:10.1088/1361-6560/ac5ed5
摘要

Capitalizing on structural magnetic resonance imaging (sMRI), existing deep learning methods (especially convolutional neural networks, CNNs) have been widely and successfully applied to computer-aided diagnosis of Alzheimer's disease (AD) and its prodromal stage (i.e. mild cognitive impairment, MCI). But considering the generalization capability of the obtained model trained on limited number of samples, we construct a multi-task multi-level feature adversarial network (M2FAN) for joint diagnosis and atrophy localization using baseline sMRI. Specifically, the linear-aligned T1 MR images were first processed by a lightweight CNN backbone to capture the shared intermediate feature representations, which were then branched into a global subnet for preliminary dementia diagnosis and a multi instance learning network for brain atrophy localization in multi-task learning manner. As the global discriminative information captured by the global subnet might be unstable for disease diagnosis, we further designed a module of multi-level feature adversarial learning that accounts for regularization to make global features robust against the adversarial perturbation synthesized by the local/instance features to improve the diagnostic performance. Our proposed method was evaluated on three public datasets (i.e. ADNI-1, ADNI-2, and AIBL), demonstrating competitive performance compared with several state-of-the-art methods in both tasks of AD diagnosis and MCI conversion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞快的孱发布了新的文献求助10
2秒前
4秒前
黑摄会阿Fay完成签到,获得积分10
4秒前
GingerF应助Ken采纳,获得50
5秒前
呆萌初南完成签到 ,获得积分10
7秒前
10秒前
小二郎应助Aleksibob采纳,获得30
11秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
11秒前
13秒前
GavinYi完成签到,获得积分10
14秒前
小马甲应助琪琪采纳,获得10
15秒前
luyajie发布了新的文献求助10
16秒前
16秒前
17秒前
舒心谷雪完成签到 ,获得积分10
19秒前
小二郎应助刺猬采纳,获得10
19秒前
20秒前
Aleksibob完成签到,获得积分10
21秒前
SciGPT应助丰富的松鼠采纳,获得10
24秒前
喜悦宫苴完成签到,获得积分10
25秒前
25秒前
27秒前
乐乐应助Tracy采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
31秒前
英姑应助渡己。采纳,获得10
31秒前
烟花应助科研通管家采纳,获得50
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
归尘应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
归尘应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
月子淇应助科研通管家采纳,获得10
31秒前
mingjing完成签到 ,获得积分10
33秒前
Chenzr完成签到,获得积分10
34秒前
赘婿应助lively采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314