亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time

初始化 计算机科学 流水车间调度 模糊逻辑 选择(遗传算法) 趋同(经济学) 进化算法 作业车间调度 工作量 分解 调度(生产过程) 数学优化 人工智能 数学 地铁列车时刻表 生态学 经济 生物 程序设计语言 经济增长 操作系统
作者
Rui Li,Wenyin Gong,Chao Lu
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:168: 108099-108099 被引量:99
标识
DOI:10.1016/j.cie.2022.108099
摘要

• The multi-objective FFJSP with two objectives is considered. • Problem-specific initial heuristic and VNS are designed. • A self-adaptive MOEA/D is proposed. • The results indicate the superior performance of our approach. With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, there is a high level of uncertainty in practical processing procedure, particularly in flexible manufacturing systems. This study addresses the multi-objective flexible job shop scheduling problem with fuzzy processing time (MOFFJSP) to minimize the makespan and the total workload simultaneously. A mixed integer liner programming model is presented and a hybrid self-adaptive multi-objective evolutionary algorithm based on decomposition (HPEA) is proposed to handle this problem. HPEA has the following features: (i) two problem-specific initial rules considering triangular fuzzy number are presented for hybrid initialization to generate diverse solutions; (ii) five problem-specific local search methods are incorporated to enhance the exploitation; (iii) an effective solution selection method based on Tchebycheff decomposition strategy is utilized to balance the convergence and diversity; and (iv) a parameter selection strategy is proposed to improve the quality of non-dominated solutions. To verify the effectiveness of HPEA, it is compared against other well-known multi-objective optimization algorithms. The results demonstrate that HPEA outperforms these five state-of-the-art multi-objective optimization algorithms in solving MOFFJSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫名是个小疯子完成签到,获得积分0
15秒前
Able完成签到,获得积分10
33秒前
liuliu发布了新的文献求助10
33秒前
ceeray23应助科研通管家采纳,获得10
38秒前
kbcbwb2002完成签到,获得积分10
41秒前
45秒前
49秒前
liuliu完成签到,获得积分20
53秒前
bei发布了新的文献求助10
53秒前
彩色靖儿完成签到 ,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助七大洋的风采纳,获得10
1分钟前
1分钟前
af完成签到,获得积分10
1分钟前
Paulolei关注了科研通微信公众号
2分钟前
Hdy完成签到,获得积分10
2分钟前
Sylvia卉完成签到,获得积分10
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
Jian发布了新的文献求助20
2分钟前
Crazybow5完成签到,获得积分10
2分钟前
2分钟前
kuoping完成签到,获得积分0
3分钟前
balko发布了新的文献求助100
3分钟前
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
4分钟前
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
tutu完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186990
求助须知:如何正确求助?哪些是违规求助? 4371968
关于积分的说明 13612717
捐赠科研通 4224803
什么是DOI,文献DOI怎么找? 2317204
邀请新用户注册赠送积分活动 1315835
关于科研通互助平台的介绍 1265238