Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time

计算机科学 流水车间调度 模糊逻辑 作业车间调度 调度(生产过程) 数学优化 算法 人工智能 数学 嵌入式系统 布线(电子设计自动化)
作者
Rui Li,Wenyin Gong,Chao Lu
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108099-108099 被引量:28
标识
DOI:10.1016/j.cie.2022.108099
摘要

• The multi-objective FFJSP with two objectives is considered. • Problem-specific initial heuristic and VNS are designed. • A self-adaptive MOEA/D is proposed. • The results indicate the superior performance of our approach. With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, there is a high level of uncertainty in practical processing procedure, particularly in flexible manufacturing systems. This study addresses the multi-objective flexible job shop scheduling problem with fuzzy processing time (MOFFJSP) to minimize the makespan and the total workload simultaneously. A mixed integer liner programming model is presented and a hybrid self-adaptive multi-objective evolutionary algorithm based on decomposition (HPEA) is proposed to handle this problem. HPEA has the following features: (i) two problem-specific initial rules considering triangular fuzzy number are presented for hybrid initialization to generate diverse solutions; (ii) five problem-specific local search methods are incorporated to enhance the exploitation; (iii) an effective solution selection method based on Tchebycheff decomposition strategy is utilized to balance the convergence and diversity; and (iv) a parameter selection strategy is proposed to improve the quality of non-dominated solutions. To verify the effectiveness of HPEA, it is compared against other well-known multi-objective optimization algorithms. The results demonstrate that HPEA outperforms these five state-of-the-art multi-objective optimization algorithms in solving MOFFJSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单于寒云发布了新的文献求助20
刚刚
1秒前
2秒前
4秒前
a_hu完成签到,获得积分10
5秒前
5秒前
5秒前
reflux应助zhang005on采纳,获得10
6秒前
6秒前
LHL关闭了LHL文献求助
6秒前
6秒前
脑洞疼应助玠岚采纳,获得10
6秒前
a_hu发布了新的文献求助50
9秒前
Bonjour发布了新的文献求助10
9秒前
yy发布了新的文献求助10
10秒前
10秒前
化工牛马发布了新的文献求助10
10秒前
刘小天发布了新的文献求助10
11秒前
lyq777完成签到,获得积分10
12秒前
Rita发布了新的文献求助10
12秒前
所所应助妩媚的妙海采纳,获得10
13秒前
13秒前
13秒前
14秒前
随遇而安完成签到 ,获得积分10
14秒前
MoriZhang完成签到,获得积分10
15秒前
vicky发布了新的文献求助10
16秒前
美女完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
18秒前
reflux应助vicky采纳,获得10
21秒前
科研通AI5应助语安采纳,获得10
22秒前
完美世界应助SS1025861采纳,获得10
22秒前
雪雪完成签到 ,获得积分10
23秒前
刘小天完成签到,获得积分10
24秒前
搜集达人应助111采纳,获得10
24秒前
FashionBoy应助谭文采纳,获得10
24秒前
24秒前
24秒前
zhihan发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944