计算机科学
四边形的
人工智能
棱锥(几何)
稳健性(进化)
特征(语言学)
像素
模式识别(心理学)
比例(比率)
编码(集合论)
探测器
计算机视觉
数学
几何学
物理
有限元法
哲学
基因
热力学
电信
量子力学
生物化学
集合(抽象数据类型)
化学
程序设计语言
语言学
作者
Min Liang,Jie-Bo Hou,Xiaobin Zhu,Chun Yang,Jingyan Qin
标识
DOI:10.1007/s10032-022-00397-5
摘要
Detecting arbitrary shape scene texts is challenging mainly due to the varied aspect ratios, curves, and scales. In this paper, we propose a novel arbitrary shape scene text detection method via Decoupled Feature Pyramid Networks (DFPN) and regression-based linking (RegLink). Our innovative DFPN decouples the width and height of feature maps generated by FPN to enhance the discriminability of features for varied aspect ratios. As quadrilateral regression results cannot directly represent curve text, we propose a simple yet effective RegLink to link pixels into text instances because pixels in the same curve text have an identical target quadrilateral. Thus, our RegLink can extend the ability of the rotated rectangles text detector for detecting curve text. Besides, we propose a Feature Scale Module to enhance the robustness of features for varied scales. In this way, our method can effectively detect scene texts in arbitrary shapes. Meanwhile, experimental results on three publicly available challenging datasets demonstrate the effectiveness of our method. The code and model of our method is available at https://github.com/lmplayer/DFPN-master.
科研通智能强力驱动
Strongly Powered by AbleSci AI