已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Tuning‐Fork Triboelectric Nanogenerator with Frequency Multiplication for Efficient Mechanical Energy Harvesting

摩擦电效应 纳米发生器 音叉 电气工程 功率密度 能量收集 材料科学 风力发电 电介质 功率(物理) 光电子学 电压 声学 工程类 物理 振动 量子力学 复合材料
作者
Nian Liu,Di Liu,Yikui Gao,Shaoxin Li,Linglin Zhou,Zhihao Zhao,Shengnan Cui,Lu Liu,Zhong Lin Wang,Jie Wang
出处
期刊:Small methods [Wiley]
卷期号:6 (5) 被引量:7
标识
DOI:10.1002/smtd.202200066
摘要

As a new technology for high-entropy energy harvesting, a triboelectric nanogenerator (TENG) has broad applications in sensor networks and internet of things as a power source, but its average power density is limited by the fixed low-frequency output. Here, a frequency-multiplication TENG based on intrinsic high frequency of tuning fork is proposed which enables converting low-frequency mechanical energy into high-frequency electric energy. A tuning-fork TENG is used to systematically study the effects of intrinsic frequency, dielectric's thickness, and gap distance on its electric performance, and a total transferred charges of 4.3 µC and an average power density of 9.42 mW m-2 are realized at the triggering frequency of 0.2 Hz, which are 71 times and 5.7 times than that of the single-cycle output of conventional contact-separation TENG, respectively. Moreover, the crest factor also decreases from 3.5 to around 1.5. Then, a homemade tuning fork-like TENG is reasonably designed for harvesting ambient wind energy, achieving an average power density of 20.02 mW m-2 at a wind speed of 7 m s-1 . Specially, its impedance resistance is independent of the mechanical triggering frequency, simplifying the back-end power management circuit design. Therefore, the frequency-multiplication TENG shows a great potential for efficient distributed energy harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲骨完成签到 ,获得积分10
刚刚
科研通AI6应助hyhyhyhy采纳,获得10
刚刚
收皮皮完成签到 ,获得积分10
1秒前
欧阳小枫完成签到 ,获得积分10
2秒前
WuFen完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
LH完成签到 ,获得积分10
5秒前
夏小胖发布了新的文献求助10
5秒前
5秒前
Star完成签到,获得积分20
6秒前
6秒前
VDC给大明5566的求助进行了留言
7秒前
LUYAO1完成签到 ,获得积分10
9秒前
材料生发布了新的文献求助10
9秒前
12秒前
Youy完成签到,获得积分10
12秒前
Star发布了新的文献求助10
13秒前
14秒前
潇潇声韵完成签到,获得积分10
14秒前
淡定的雁玉完成签到 ,获得积分10
15秒前
淡淡土豆应助lili992采纳,获得15
15秒前
15秒前
17秒前
传奇3应助心灵美的笑卉采纳,获得10
17秒前
19秒前
西红柿完成签到,获得积分10
19秒前
不知道是谁完成签到,获得积分10
20秒前
123发布了新的文献求助10
20秒前
月关完成签到 ,获得积分10
23秒前
西红柿发布了新的文献求助30
24秒前
科研通AI6应助夏小胖采纳,获得10
24秒前
抱抱你完成签到,获得积分20
24秒前
明亮三娘发布了新的文献求助10
24秒前
25秒前
菲菲完成签到 ,获得积分10
26秒前
怕黑钢笔完成签到 ,获得积分10
27秒前
科目三应助123采纳,获得10
27秒前
lili992完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509080
求助须知:如何正确求助?哪些是违规求助? 4604125
关于积分的说明 14489198
捐赠科研通 4538775
什么是DOI,文献DOI怎么找? 2487190
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838